Degenerate perturbations of a two-phase transition model

被引:0
|
作者
Monti, R [1 ]
Cassano, FS [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Povo, Trento, Italy
关键词
phase transitions; Gamma-convergence; Carnot-Caratheodory spaces; minimal interface criterion;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Gamma-convergence as epsilon --> 0(+) of the family of degenerate functionals Q(epsilon)(u) = epsilon integral(Omega)<ADu, Du>dx + 1/epsilon integral(Omega)W(u)dx where A(x) is a symmetric, non negative n x n matrix on Omega (i.e. <A(x)xi, xi> greater than or equal to 0 for all x is an element of Omega and xi is an element of R-n) with regular entries and W : R --> [0, +infinity) is a double well potential having two isolated minimum points. Moreover, under suitable assumptions on the matrix A, we obtain a minimal interface criterion for the Gamma-limit functional exploiting some tools of Analysis in Carnot-Caratheodory spaces. We extend some previous results obtained for the non degenerate perturbations Q(epsilon) in the classical gradient theory of phase transitions.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [31] Spherically symmetric two-phase deformations and phase transition zones
    Freidin, A. B.
    Fu, Y. B.
    Sharipova, L. L.
    Vilchevskaya, E. N.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (14-15) : 4484 - 4508
  • [32] Two-phase flow in porous media: dynamical phase transition
    Knudsen, HA
    Hansen, A
    EUROPEAN PHYSICAL JOURNAL B, 2006, 49 (01): : 109 - 118
  • [33] MODELING OF THE PROCESS OF TWO-PHASE TRANSPIRATION COOLING IN THE PRESENCE OF PERIODIC PERTURBATIONS
    Golovanov, A. N.
    Yakimov, A. S.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2012, 85 (03) : 505 - 515
  • [34] A two-phase model for fluidized beds
    洪若瑜
    李洪钟
    朱庆山
    程懋圩
    张济宇
    Progress in Natural Science, 1995, (05) : 69 - 75
  • [35] Cell model for two-phase media
    Volkov P.K.
    Journal of Applied Mechanics and Technical Physics, 1997, 38 (2) : 271 - 279
  • [36] A two-phase model of bubbly fluids
    Li, Weiming
    Paolucci, Samuel
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 8, PTS A AND B: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, 2008, : 1941 - 1946
  • [37] A two-phase riverine spill model
    Hibbs, DE
    Chen, YF
    Gulliver, JS
    Voller, VR
    1997 INTERNATIONAL OIL SPILL CONFERENCE: IMPROVING ENVIRONMENTAL PROTECTION, 1997, : 567 - 571
  • [38] A two-phase model of shale pyrolysis
    Knyazeva, A. G.
    Maslov, A. L.
    Martemyanov, S. M.
    FUEL, 2018, 228 : 132 - 139
  • [39] A stochastic two-phase growth model
    Q. Zheng
    Bulletin of Mathematical Biology, 1998, 60 : 151 - 161
  • [40] The Riemann problem for a two-phase model
    Andrianov, N
    Saurel, R
    Warnecke, G
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2003, : 275 - 284