Evaluation of controller performance - use of models derived by subspace identification

被引:11
|
作者
Bezergianni, S [1 ]
Georgakis, C
机构
[1] Lehigh Univ, Dept Chem Engn & Chem Proc Modeling, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Control Res Ctr, Bethlehem, PA 18015 USA
[3] Polytech Univ, Othmer Dept Chem & Biol Sci & Engn, Brooklyn, NY 11201 USA
关键词
controller performance assessment; minimum variance control; subspace identification;
D O I
10.1002/acs.764
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new approach is presented for the estimation of the controller, process, and disturbance models necessary for the calculation of the relative variance index, which was introduced in an earlier paper (Control Eng. Practice 2000; 8:791-797), for the performance of SISO controllers. It involves the use of dynamically, sufficiently rich segments from the normal operating data and the use of the subspace identification technique to estimate the systems mentioned above. This approach improves the estimation accuracy of the performance index in relation to the method presented previously. The estimated models enable the comparison of the present controller performance with that of optimally tuned PI or IMC controllers. This helps identify the potential benefits of either retuning or redesigning the assessed controller. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:527 / 552
页数:26
相关论文
共 50 条
  • [21] Performance evaluation of laser tracker kinematic models and parameter identification
    J. Conte
    A. C. Majarena
    R. Acero
    J. Santolaria
    J. J. Aguilar
    The International Journal of Advanced Manufacturing Technology, 2015, 77 : 1353 - 1364
  • [22] Performance evaluation of laser tracker kinematic models and parameter identification
    Conte, J.
    Majarena, A. C.
    Acero, R.
    Santolaria, J.
    Aguilar, J. J.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 77 (5-8): : 1353 - 1364
  • [23] Performance evaluation of YOLO models for damage identification in tertiary packaging
    Daniel Arturo Olivares-Vera
    Emmanuel Ovalle-Magallanes
    José I. Hernández-Vázquez
    José O. Hernández-Vázquez
    David A. Gutierrez-Hernandez
    Angela del Pilar Olivares-Vera
    Signal, Image and Video Processing, 2025, 19 (6)
  • [24] Performance analysis of the subspace method for blind channel identification
    Qiu, WZ
    Hua, YB
    SIGNAL PROCESSING, 1996, 50 (1-2) : 71 - 81
  • [25] Performance of different models in non-linear subspace
    Bodapati, Jyostna Devi
    Veeranjaneyulu, N.
    2016 INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (ICONSIP), 2016,
  • [26] Oscillation Identification and Frequency Damping Controller Design for Battery Energy Storage System Using Subspace Identification
    Al Hasnain, Fahim
    Hasan, Md Shamim
    Arifin, Md Hasnain
    Kamalasadan, Sukumar
    Smith, Michael
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2024, 60 (03) : 4796 - 4809
  • [27] Identification of canonical models for vectors of time series: a subspace approach
    Garcia-Hiernaux, Alfredo
    Casals, Jose
    Jerez, Miguel
    STATISTICAL PAPERS, 2024, 65 (03) : 1493 - 1530
  • [28] Comparison of performance of land use regression models derived for Catalunya, Spain
    de Nazelle, Audrey
    Aguilera, Inmaculada
    Nieuwenhuijsen, Mark
    Beelen, Rob
    Cirach, Marta
    Hoek, Gerard
    de Hoogh, Kees
    Sunyer, Jordi
    Targa, Jaume
    Brunekreef, Bert
    Kuenzli, Nino
    Basagana, Xavier
    ATMOSPHERIC ENVIRONMENT, 2013, 77 : 598 - 606
  • [29] Subspace-based identification algorithms for Hammerstein and Wiener models
    Gómez, JC
    Baeyens, E
    EUROPEAN JOURNAL OF CONTROL, 2005, 11 (02) : 127 - 136
  • [30] Tensor network subspace identification of polynomial state space models
    Batselier, Kim
    Ko, Ching-Yun
    Wong, Ngai
    AUTOMATICA, 2018, 95 : 187 - 196