On the Exponential Stability of Discrete Semigroups

被引:8
|
作者
Zada, Akbar [1 ]
Ahmad, Nisar [1 ]
Khan, Ihsan Ullah [1 ]
Khan, Faiz Muhammad [2 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar, Pakistan
[2] Univ Swat, Dept Math & Stat, Swat, Pakistan
关键词
Exponential stability; Discrete semigroups; Periodic sequences;
D O I
10.1007/s12346-014-0124-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q be a positive integer and let X be a complex Banach space. We denote by Z(+) the set of all nonnegative integers. Let P-q (Z(+), X) is the set of all X-valued, q-periodic sequences. Then P-1(Z(+), X) is the set of all X-valued constant sequences. When q >= 2, we denote by P-q(0) (Z(+), X), the subspace of P-q (Z(+), X) consisting of all sequences z(.) with z(0) = 0. Let T be a bounded linear operator acting on X. It is known, that the discrete semigroup generated (from the algebraic point of view) of T, i.e. the operator valued sequence T = (T-n), is uniformly exponentially stable (i.e. limn(n ->infinity) ln parallel to T-n parallel to/n < 0), if and only if for each real number mu and each sequences z(.) in P-1(Z(+), X) the sequences (y(n)) given by {y(n+1) = T(1)y(n) + e(i mu(n+1))z(n +1), y(0) = 0 is bounded. In this paper we prove a complementary result taking P-q(0) (Z(+), X) with some integer q >= 2 instead of P-1(Z(+), X).
引用
收藏
页码:149 / 155
页数:7
相关论文
共 50 条
  • [21] On the exponential stability of discrete Volterra systems
    Crisci, MR
    Kolmanovskii, VB
    Russo, E
    Vecchio, A
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2000, 6 (06) : 667 - 680
  • [22] EXPONENTIAL ABSOLUTE STABILITY OF DISCRETE SYSTEMS
    SILJAK, DD
    SUN, CK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1971, 51 (04): : 271 - &
  • [23] A Characteristic Condition for the Exponential Stability of C0 Semigroups
    姚鹏飞
    冯德兴
    ChineseScienceBulletin, 1994, (07) : 534 - 537
  • [24] Exponential stability and unstability of semigroups of linear operators in Banach spaces
    Megan, M
    Sasu, AL
    Sasu, B
    Pogan, A
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (03): : 557 - 567
  • [25] A CHARACTERISTIC CONDITION FOR THE EXPONENTIAL STABILITY OF C0 SEMIGROUPS
    YAO, PF
    FENG, DX
    CHINESE SCIENCE BULLETIN, 1994, 39 (07): : 534 - 537
  • [26] Stability for random measures, point processes and discrete semigroups
    Davydov, Youri
    Molchanov, Ilya
    Zuyev, Sergei
    BERNOULLI, 2011, 17 (03) : 1015 - 1043
  • [27] Exponential stability of perturbed linear discrete systems
    Josef Diblík
    Denys Y Khusainov
    Jaromír Baštinec
    Andrii S Sirenko
    Advances in Difference Equations, 2016
  • [28] Exponential Stability of Linear Discrete Systems with Delay
    Diblik, Josef
    Khusainov, Denys Ya.
    Ruzickova, Miroslava
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [29] Exponential stability of discrete linear repetitive processes
    Dymkov, M
    Gaishun, I
    Galkowski, K
    Rogers, E
    Owens, DH
    INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (12) : 861 - 869
  • [30] Exponential stability of perturbed linear discrete systems
    Diblik, Josef
    Khusainov, Denys Y.
    Bastinec, Jaromir
    Sirenko, Andrii S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 20