Multiclass generalized networks with cyclical synchronization

被引:0
|
作者
Fourneau, JM
Pekergin, N
Verchere, D
机构
[1] Univ Pantheon Sorbonne, CERMSEM, F-75013 Paris, France
[2] Univ Versailles, PRISM, F-78035 Versailles, France
来源
关键词
networks of queues; synchronized transitions; product form steady-state distribution; customer deletion;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a generalized network of queues with multiple classes of customers where signals may delete customers in service according to a rooted circular list of queues. We only consider stations with processor sharing service discipline. We prove the steady-state distribution has a product form if the flow equations have a solution. These networks may be used to model synchronizations in parallel systems, losses of packets in networks, of failures with deletion of customers. (C) Elsevier, Paris.
引用
收藏
页码:353 / 372
页数:20
相关论文
共 50 条
  • [21] Establishing generalized synchronization in Rössler oscillator networks
    Koronovskii A.A.
    Moskalenko O.I.
    Pivovarov A.A.
    Hramov A.E.
    Bulletin of the Russian Academy of Sciences: Physics, 2016, 80 (2) : 186 - 189
  • [22] Generalized synchronization between two different complex networks
    Wu, Yongqing
    Li, Changpin
    Wu, Yujiang
    Kurths, Juergen
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 349 - 355
  • [23] Generalized projective synchronization of a class of delayed neural networks
    Meng, Juan
    Wang, Xingyuan
    MODERN PHYSICS LETTERS B, 2008, 22 (03): : 181 - 190
  • [24] Generalized synchronization in mutually coupled oscillators and complex networks
    Moskalenko, Olga I.
    Koronovskii, Alexey A.
    Hramov, Alexander E.
    Boccaletti, Stefano
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [25] Generalized outer synchronization between complex dynamical networks
    Wu, Xiaoqun
    Zheng, Wei Xing
    Zhou, Jin
    CHAOS, 2009, 19 (01)
  • [26] Generalized synchronization in networks with a complicated topology of interelement couplings
    Koronovskii, A. A.
    Moskalenko, O. I.
    Khramov, A. E.
    Shurygina, S. A.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2013, 58 (05) : 459 - 468
  • [27] Synchronization of generalized fractional complex networks with partial subchannel losses
    Dai, Changping
    Ma, Weiyuan
    Guo, Ling
    AIMS MATHEMATICS, 2024, 9 (03): : 7063 - 7083
  • [28] Synchronization in generalized Erdos-Renyi networks of nonlinear oscillators
    Preciado, Victor A.
    Verghese, George C.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 4628 - 4633
  • [29] A novel definition of generalized synchronization on networks and a numerical simulation example
    Xu, Xulin
    Chen, Zengqiang
    Si, Guangya
    Hu, Xiaofeng
    Luo, Pi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (11) : 2789 - 2794
  • [30] Pinning generalized synchronization of dynamical networks via coordinate transformations
    Barajas-Ramirez, Juan Gonzalo
    Ruiz-Silva, Adriana
    Anzo-Hernandez, Andres
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 1164 - 1175