On the algebraic multigrid method

被引:73
|
作者
Chang, QS
Wong, YS
Fu, HQ
机构
[1] INST APPL PHYS & COMPUTAT MATH,LAB COMPUTAT PHYS,BEIJING 100088,PEOPLES R CHINA
[2] UNIV ALBERTA,DEPT MATH SCI,EDMONTON,AB T6G 2G1,CANADA
关键词
D O I
10.1006/jcph.1996.0094
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
New formulations for the algebraic multigrid (AMG) method are presented. A new interpolation operator is developed, in which the weighting could be negative. Numerical experiments demonstrate that the use of negative interpolation weights is necessary in some applications. New approaches to construct the restriction operator and the coarse-grid equations are discussed. Two new AMG methods are proposed. Theoretical study and convergence analysis of the AMG methods are presented. The main contributions of this paper are to improve the convergence rate and to extend the range of applications of an AMG method. Numerical experiments are reported for matrix computations that resulted from partial differential equations, signal processing, and queueing network problems. The success of the proposed new AMG algorithms is clearly demonstrated by applications to non-diagonally dominant matrix problems for which the standard AMG method fails to converge. (C) 1996 Academic Press. Inc.
引用
收藏
页码:279 / 292
页数:14
相关论文
共 50 条
  • [31] An algebraic multigrid method for solving very large electromagnetic systems
    Mertens, R
    De Gersem, H
    Belmans, R
    Hameyer, K
    Lahaye, D
    Vandewalle, S
    Roose, D
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 3327 - 3330
  • [32] ALGEBRAIC MULTIGRID FOR STOKES EQUATIONS
    Notay, Yvan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S88 - S111
  • [33] ALGEBRAIC SPECTRAL MULTIGRID METHODS
    HEINRICHS, W
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 80 (1-3) : 281 - 286
  • [34] On generalizing the algebraic multigrid framework
    Falgout, RD
    Vassilevski, PS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) : 1669 - 1693
  • [35] Algebraic analysis of multigrid algorithms
    Pflaum, C
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1999, 6 (08) : 701 - 728
  • [36] ALGEBRAIC MULTIGRID FOR MARKOV CHAINS
    De Sterck, H.
    Manteuffel, T. A.
    Mccormick, S. F.
    Miller, K.
    Ruge, J.
    Sanders, G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02): : 544 - 562
  • [37] Robustness and scalability of algebraic multigrid
    Cleary, AJ
    Falgout, RD
    Henson, VE
    Jones, JE
    Manteuffel, TA
    McCormick, SF
    Miranda, GN
    Ruge, JW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05): : 1886 - 1908
  • [38] Algebraic Multigrid Preconditioner for a Finite Element Method in TM Electromagnetic Scattering
    Kim, K.
    Leem, K. H.
    Pelekanos, G.
    Song, M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2009, 11 (04) : 597 - 605
  • [39] An algebraic multigrid method for higher-order finite element discretizations
    Shu, S.
    Sun, D.
    Xu, J.
    COMPUTING, 2006, 77 (04) : 347 - 377
  • [40] NEW INTERPOLATION FORMULAS OF USING GEOMETRIC ASSUMPTIONS IN THE ALGEBRAIC MULTIGRID METHOD
    CHANG, QS
    WONG, YS
    LI, ZF
    APPLIED MATHEMATICS AND COMPUTATION, 1992, 50 (2-3) : 223 - 254