On the structure of Hamiltonian cycles in Cayley graphs of finite quotients of the modular group

被引:4
|
作者
Schupp, PE [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1016/S0304-3975(98)00041-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is a fairly longstanding conjecture that if G is any finite group with \G\ > 2 and if X is any set of generators of G then the Cayley graph Gamma(G :X) should have a Hamiltonian cycle. We present experimental results found by computer calculation that support the conjecture. It turns out that in the case where G is a finite quotient of the modular group the Hamiltonian cycles possess remarkable structural properties. (C) 1998-Elsevier Science B.V. All rights reserved.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 50 条
  • [21] Unitary Cayley graphs of Dedekind domain quotients
    Defant, Colin
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (01) : 65 - 75
  • [22] Mutually independent Hamiltonian cycles in alternating group graphs
    Su, Hsun
    Chen, Shih-Yan
    Kao, Shin-Shin
    JOURNAL OF SUPERCOMPUTING, 2012, 61 (03): : 560 - 571
  • [23] Mutually independent Hamiltonian cycles in alternating group graphs
    Hsun Su
    Shih-Yan Chen
    Shin-Shin Kao
    The Journal of Supercomputing, 2012, 61 : 560 - 571
  • [24] Hamiltonian cycles in cubic Cayley graphs: the (2, 4k, 3) case
    Glover, Henry H.
    Kutnar, Klavdija
    Marusic, Dragan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 30 (04) : 447 - 475
  • [25] On tetravalent normal edge-transitive Cayley graphs on the modular group
    Sharifii, Hesam
    Darafsheh, Mohammad Reza
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1308 - 1312
  • [26] Hamiltonian cycles in cubic Cayley graphs: the 〈2,4k,3〉 case
    Henry H. Glover
    Klavdija Kutnar
    Dragan Marušič
    Journal of Algebraic Combinatorics, 2009, 30 : 447 - 475
  • [27] Almost all Cayley Graphs Are Hamiltonian
    Meng Jixiang Huang Qiongxiang Meng Jixiang Huang Qiongxiang Department of Mathematics and Institute of Mathematics and Phisics Xinjiang University Urumqi
    Acta Mathematica Sinica,English Series, 1996, (02) : 151 - 155
  • [28] Almost all Cayley Graphs Are Hamiltonian
    Meng Jixiang Huang Qiongxiang Meng Jixiang Huang Qiongxiang Department of Mathematics and Institute of Mathematics and Phisics Xinjiang University Urumqi China
    Acta Mathematica Sinica(New Series), 1996, 12 (02) : 151 - 155
  • [29] HAMILTONIAN CIRCUITS IN CAYLEY-GRAPHS
    MARUSIC, D
    DISCRETE MATHEMATICS, 1983, 46 (01) : 49 - 54
  • [30] HAMILTONIAN CYCLES IN GRAPHS
    LIU, ZH
    ZHU, YJ
    TIAN, F
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 367 - 376