On the structure of Hamiltonian cycles in Cayley graphs of finite quotients of the modular group

被引:4
|
作者
Schupp, PE [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1016/S0304-3975(98)00041-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is a fairly longstanding conjecture that if G is any finite group with \G\ > 2 and if X is any set of generators of G then the Cayley graph Gamma(G :X) should have a Hamiltonian cycle. We present experimental results found by computer calculation that support the conjecture. It turns out that in the case where G is a finite quotient of the modular group the Hamiltonian cycles possess remarkable structural properties. (C) 1998-Elsevier Science B.V. All rights reserved.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 50 条
  • [1] HAMILTONIAN CYCLES IN CAYLEY COLOR GRAPHS
    KLERLEIN, JB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A654 - A654
  • [2] Hamiltonian Cycles in Normal Cayley Graphs
    Jose Montellano-Ballesteros, Juan
    Santiago Arguello, Anahy
    GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1707 - 1714
  • [3] Hamiltonian Cycles in Normal Cayley Graphs
    Juan José Montellano-Ballesteros
    Anahy Santiago Arguello
    Graphs and Combinatorics, 2019, 35 : 1707 - 1714
  • [4] Hamiltonian Cycles in Cayley Graphs of Gyrogroups
    Maungchang, Rasimate
    Detphumi, Charawi
    Khachorncharoenkul, Prathomjit
    Suksumran, Teerapong
    MATHEMATICS, 2022, 10 (08)
  • [5] A SURVEY - HAMILTONIAN CYCLES IN CAYLEY-GRAPHS
    WITTE, D
    GALLIAN, JA
    DISCRETE MATHEMATICS, 1984, 51 (03) : 293 - 304
  • [6] Hamiltonian cycles and paths in Cayley graphs and digraphs - A survey
    Curran, SJ
    Gallian, JA
    DISCRETE MATHEMATICS, 1996, 156 (1-3) : 1 - 18
  • [7] Class of Hamiltonian cayley graphs on the symmetric group
    Wang, Shiying
    Liu, Guangwu
    Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering), 2002, 26 (03):
  • [8] Hamiltonian cycles in Cayley graphs of imprimitive complex reflection groups
    Kriloff, Cathy
    Lay, Terry
    DISCRETE MATHEMATICS, 2014, 326 : 50 - 60
  • [9] Flows that are sums of hamiltonian cycles in Cayley graphs on abelian groups
    Morris, DW
    Morris, J
    Moulton, DP
    DISCRETE MATHEMATICS, 2005, 299 (1-3) : 208 - 268
  • [10] Hamiltonian decompositions of Cayley diagraphs on finite cyclic graphs
    Meng, Tixiang
    Huang, Qiongxiang
    Journal of Mathematical Research and Exposition / Shu Hsueh Yen Chiu Yu Ping Lun, 1993, 13 (01):