Nonparametric Bayesian sparse graph linear dynamical systems

被引:0
|
作者
Kalantari, Rahi [1 ]
Ghosh, Joydeep [1 ]
Zhou, Mingyuan [2 ]
机构
[1] Univ Texas Austin, Elect & Comp Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, McCombs Sch Business, Austin, TX 78712 USA
关键词
VARIABLE SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A nonparametric Bayesian sparse graph linear dynamical system (SGLDS) is proposed to model sequentially observed multivariate data. SGLDS uses the Bernoulli-Poisson link together with a gamma process to generate an infinite dimensional sparse random graph to model state transitions. Depending on the sparsity pattern of the corresponding row and column of the graph affinity matrix, a latent state of SGLDS can be categorized as either a non-dynamic state or a dynamic one. A normal-gamma construction is used to shrink the energy captured by the non-dynamic states, while the dynamic states can be further categorized into live, absorbing, or noise-injection states, which capture different types of dynamical components of the underlying time series. The state-of-the-art performance of SGLDS is demonstrated with experiments on both synthetic and real data.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Efficient Optimization for Linear Dynamical Systems with Applications to Clustering and Sparse Coding
    Huang, Wenbing
    Harandi, Mehrtash
    Zhang, Tong
    Fan, Lijie
    Sun, Fuchun
    Huang, Junzhou
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [22] Sparse Actuator Control of Discrete-Time Linear Dynamical Systems
    Joseph, Geethu
    FOUNDATIONS AND TRENDS IN SYSTEMS AND CONTROL, 2024, 11 (03): : 186 - 284
  • [23] DYNAMICAL SYSTEM IMPLEMENTATIONS OF SPARSE BAYESIAN LEARNING
    O'Shaughnessy, Matthew R.
    Davenport, Mark A.
    Rozell, Christopher J.
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 136 - 140
  • [25] PROBABILISTIC FILTER AND SMOOTHER FOR VARIATIONAL INFERENCE OF BAYESIAN LINEAR DYNAMICAL SYSTEMS
    Neri, Julian
    Badeau, Roland
    Depalle, Philippe
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5885 - 5889
  • [26] Model Reduction of Linear Dynamical Systems via Balancing for Bayesian Inference
    Elizabeth Qian
    Jemima M. Tabeart
    Christopher Beattie
    Serkan Gugercin
    Jiahua Jiang
    Peter R. Kramer
    Akil Narayan
    Journal of Scientific Computing, 2022, 91
  • [27] A Study on Bayesian Learning of One-Dimensional Linear Dynamical Systems
    Naito, Takuto
    Yamazaki, Keisuke
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2009, 5863 : 110 - +
  • [28] Model Reduction of Linear Dynamical Systems via Balancing for Bayesian Inference
    Qian, Elizabeth
    Tabeart, Jemima M.
    Beattie, Christopher
    Gugercin, Serkan
    Jiang, Jiahua
    Kramer, Peter R.
    Narayan, Akil
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (01)
  • [29] Nonparametric modeling and spatiotemporal dynamical systems
    Abel, M
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (06): : 2027 - 2039
  • [30] BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS
    Castillo, Ismael
    Schmidt-Hieber, Johannes
    Van der Vaart, Aad
    ANNALS OF STATISTICS, 2015, 43 (05): : 1986 - 2018