Nonparametric Bayesian sparse graph linear dynamical systems

被引:0
|
作者
Kalantari, Rahi [1 ]
Ghosh, Joydeep [1 ]
Zhou, Mingyuan [2 ]
机构
[1] Univ Texas Austin, Elect & Comp Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, McCombs Sch Business, Austin, TX 78712 USA
关键词
VARIABLE SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A nonparametric Bayesian sparse graph linear dynamical system (SGLDS) is proposed to model sequentially observed multivariate data. SGLDS uses the Bernoulli-Poisson link together with a gamma process to generate an infinite dimensional sparse random graph to model state transitions. Depending on the sparsity pattern of the corresponding row and column of the graph affinity matrix, a latent state of SGLDS can be categorized as either a non-dynamic state or a dynamic one. A normal-gamma construction is used to shrink the energy captured by the non-dynamic states, while the dynamic states can be further categorized into live, absorbing, or noise-injection states, which capture different types of dynamical components of the underlying time series. The state-of-the-art performance of SGLDS is demonstrated with experiments on both synthetic and real data.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Sparse Graphical Linear Dynamical Systems
    Chouzenoux, Emilie
    Elvira, Victor
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 53
  • [2] A Bayesian nonparametric approach to reconstruction and prediction of random dynamical systems
    Merkatas, Christos
    Kaloudis, Konstantinos
    Hatjispyros, Spyridon J.
    CHAOS, 2017, 27 (06)
  • [3] Bayesian Differential Privacy for Linear Dynamical Systems
    Sugiura, Genki
    Ito, Kaito
    Kashima, Kenji
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 896 - 901
  • [4] Graph Gamma Process Linear Dynamical Systems
    Kalantari, Rahi
    Zhou, Mingyuan
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [5] Bayesian nonparametric sparse VAR models
    Billio, Monica
    Casarin, Roberta
    Rossini, Luca
    JOURNAL OF ECONOMETRICS, 2019, 212 (01) : 97 - 115
  • [6] A DYNAMICAL SYSTEMS PERSPECTIVE ON ONLINE BAYESIAN NONPARAMETRIC ESTIMATORS WITH ADAPTIVE HYPERPARAMETERS
    Koppel, Alec
    Bedi, Amrit S.
    Krishnamurthy, Vikram
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2975 - 2979
  • [7] Nonparametric sparse estimators for identification of large scale linear systems
    Chiuso, Alessandro
    Pillonetto, Gianluigi
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2942 - 2947
  • [8] CONTROL OF LINEAR DYNAMICAL SYSTEMS USING SPARSE INPUTS
    Sriram, Chandrasekhar
    Joseph, Geethu
    Murthy, Chandra R.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5765 - 5769
  • [9] Sparse Coding and Dictionary Learning with Linear Dynamical Systems
    Huang, Wenbing
    Sun, Fuchun
    Cao, Lele
    Zhao, Deli
    Liu, Huaping
    Harandi, Mehrtash
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3938 - 3947
  • [10] Nonparametric Bayesian label prediction on a graph
    Hartog, Jarno
    van Zanten, Harry
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 120 : 111 - 131