Effects of chamber pressure variation on the grid temperature in an inertial electrostatic confinement device

被引:9
|
作者
Murali, S. Krupakar [1 ]
Emmert, G. A. [2 ]
Santarius, J. F. [2 ]
Kulcinski, G. L. [2 ]
机构
[1] Lawrenceville Plasma Phys, Middlesex, NJ 08846 USA
[2] Univ Wisconsin, Fus Technol Inst, Madison, WI 53706 USA
关键词
Electrostatic devices - Inertial confinement fusion - Electrostatics;
D O I
10.1063/1.3484224
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Inertial electrostatic confinement fusion devices are compact sources of neutrons, protons, electrons, and x rays. Such sources have many applications. Improving the efficiency of the device also increases the applications of this device. Hence a thorough understanding of the operation of this device is needed. In this paper, we study the effect of chamber pressure on the temperature of the cathode. Experimentally, the grid temperature decreases as the chamber pressure increases; numerical simulations suggest that this is caused by the reduction of the hot ion current to the cathode as the pressure increases for constant power supply current. Such an understanding further supports the conclusion that the asymmetric heating of the cathode can be decreased by homogenizing the ion flow around the cathode. (C) 2010 American Institute of Physics. [doi:10.1063/1.3484224]
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Inertial electrostatic confinement fusion device with an ion source using a magnetron discharge
    Takamatsu, T
    Masuda, K
    Kyunai, T
    Toku, H
    Yoshikawa, K
    NUCLEAR FUSION, 2006, 46 (01) : 142 - 148
  • [42] MEASUREMENT OF ELECTRON-DENSITY IN A CYLINDRICAL INERTIAL ELECTROSTATIC PLASMA CONFINEMENT DEVICE
    MEEKER, DJ
    VERDEYEN, JT
    CHERRING.BE
    JOURNAL OF APPLIED PHYSICS, 1973, 44 (12) : 5347 - 5355
  • [43] Confinement of ions in an inertial electrostatic confinement fusion (IECF) device and its influence on neutron production rate
    Noborio, K
    Yamamoto, Y
    Ueno, Y
    Konishi, S
    FUSION ENGINEERING AND DESIGN, 2006, 81 (8-14) : 1701 - 1705
  • [44] BUILT-IN ION SOURCE FOR INERTIAL ELECTROSTATIC CONFINEMENT IN LOW PRESSURE REGIME
    Masuda, Kai
    Nakagawa, Tomoya
    Kajiwara, Taiju
    Zen, Heishun
    Yoshikawa, Kiyoshi
    Nagasaki, Kazunobu
    FUSION SCIENCE AND TECHNOLOGY, 2009, 56 (01) : 523 - 527
  • [45] Ion flux mapping in an inertial-electrostatic confinement device using a chordwire diagnostic
    Murali, S. Krupakar
    Santarius, J. F.
    Kulcinski, G. L.
    PHYSICS OF PLASMAS, 2009, 16 (10)
  • [46] Measurements of diverging ion motion in an inertial electrostatic confinement device using Doppler spectroscopy
    Hermens, J.
    Jaspers, R.
    Khachan, J.
    PHYSICS OF PLASMAS, 2019, 26 (10)
  • [47] STUDY OF THERMIONIC ELECTRONS IN AN INERTIAL ELECTROSTATIC CONFINEMENT DEVICE USING A NOVEL "CHORDWIRE" DIAGNOSTIC
    Murali, S. Krupakar
    Santarius, J. F.
    Kulcinski, G. L.
    FUSION SCIENCE AND TECHNOLOGY, 2010, 57 (03) : 281 - 291
  • [48] Studies on ion flow dynamics in a disk-shaped inertial electrostatic confinement fusion device under the influence of a triple grid arrangement
    Saikia, L.
    Bhattacharjee, D.
    Mohanty, S. R.
    Adhikari, S.
    PHYSICS OF PLASMAS, 2023, 30 (02)
  • [49] Spherical plasma oscillations in a reversed-polarity inertial-electrostatic confinement device
    Tuft, C.
    Khachan, J.
    PHYSICS OF PLASMAS, 2010, 17 (11)
  • [50] Experimental observation of a periodically oscillating plasma sphere in a gridded inertial electrostatic confinement device
    Park, J
    Nebel, RA
    Stange, S
    Murali, SK
    PHYSICAL REVIEW LETTERS, 2005, 95 (01)