Universality of Artin L-functions in conductor aspect

被引:1
|
作者
Cho, Peter J. [1 ]
Kim, Henry H. [2 ,3 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Math Sci, Ulsan, South Korea
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[3] Korea Inst Adv Study, Seoul, South Korea
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Universality; Artin L-function;
D O I
10.1016/j.jmaa.2017.06.076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the universality of Artin L-functions associated to a certain family of number fields in conductor aspect. When s = 1 + it and s = 1, our result is unconditional. In the critical strip, we assume a conjecture on large sieve inequality of Artin L-functions, or GRH. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:34 / 56
页数:23
相关论文
共 50 条
  • [21] COMPUTING ARTIN L-FUNCTIONS IN THE CRITICAL STRIP
    LAGARIAS, JC
    ODLYZKO, AM
    MATHEMATICS OF COMPUTATION, 1979, 33 (147) : 1081 - 1095
  • [22] Are number fields determined by Artin L-functions?
    Klueners, Juergen
    Nicolae, Florin
    JOURNAL OF NUMBER THEORY, 2016, 167 : 161 - 168
  • [23] Moments of Artin-Schreier L-functions
    Florea, Alexandra
    Jones, Edna
    Lalin, Matilde
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (04): : 1255 - 1284
  • [24] On Artin L-functions of certain central extensions
    Kida, Masanari
    Namura, Norihiko
    JOURNAL OF NUMBER THEORY, 2017, 173 : 147 - 169
  • [25] ON P-ADIC ARTIN L-FUNCTIONS
    GREENBERG, R
    NAGOYA MATHEMATICAL JOURNAL, 1983, 89 (MAR) : 77 - 87
  • [26] ON THE SEMIGROUP RING OF HOLOMORPHIC ARTIN L-FUNCTIONS
    Cimpoeas, Mircea
    COLLOQUIUM MATHEMATICUM, 2020, 160 (02) : 283 - 295
  • [27] To the Problem of the Integrity of the Artin's L-functions
    Kuznetsov, V. N.
    Krivobok, V. V.
    Stepanenko, D. S.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2013, 13 (04): : 23 - 27
  • [28] Virasoro Character Identities and Artin L-Functions
    A. Taormina
    S. M. J. Wilson
    Communications in Mathematical Physics, 1998, 196 : 77 - 103
  • [29] Central limit theorem for Artin L-functions
    Cho, Peter J.
    Kim, Henry H.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (01) : 1 - 14
  • [30] Artin-Ihara L-functions for hypergraphs
    Eyler, Mason
    Jun, Jaiung
    ADVANCES IN MATHEMATICS, 2024, 450