A convergence analysis for directional two-step Newton methods

被引:9
|
作者
Argyros, Ioannis K. [1 ]
Hilout, Said [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Univ Poitiers, Lab Math & Applicat, F-86962 Futuroscope, France
关键词
Directional two-step Newton method; Hilbert space; Nonlinear equation; Lipschitz/center-Lipschitz condition; Recurrent functions; Recurrent sequences; Newton-Kantorovich-type hypotheses;
D O I
10.1007/s11075-010-9368-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A semilocal convergence analysis for directional two-step Newton methods in a Hilbert space setting is provided in this study. Two different techniques are used to generate the sufficient convergence results, as well as the corresponding error bounds. The first technique uses our new idea of recurrent functions, whereas the second uses recurrent sequences. We also compare the results of the two techniques.
引用
收藏
页码:503 / 528
页数:26
相关论文
共 50 条
  • [31] A wavelet adaptive two-step newton type method
    Amat, S
    Busquier, S
    Escudero, A
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 140 - 141
  • [32] On the Local Convergence of Two-Step Newton Type Method in Banach Spaces under Generalized Lipschitz Conditions
    Saxena, Akanksha
    Argyros, Ioannis K.
    Jaiswal, Jai P.
    Argyros, Christopher
    Pardasani, Kamal R.
    MATHEMATICS, 2021, 9 (06)
  • [33] On a two-step relaxed Newton-type method
    Amat, S.
    Magrenan, A. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11341 - 11357
  • [34] A wavelet adaptive two-step Newton type method
    Amat, S.
    Busquier, S.
    Escudero, A.
    Manzano, F.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (05): : 823 - 831
  • [35] An efficient family of two-step with-memory methods with convergence order 6 and their dynamics
    Vali Torkashvand
    Manochehr Kazemi
    Mohammad Javad Lalehchini
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [36] Extended convergence for two-step methods with non-differentiable parts in Banach spaces
    Ioannis K. Argyros
    Santhosh George
    Kedarnath Senapati
    The Journal of Analysis, 2024, 32 (2) : 697 - 709
  • [37] An efficient family of two-step with-memory methods with convergence order 6 and their dynamics
    Torkashvand, Vali
    Kazemi, Manochehr
    Lalehchini, Mohammad Javad
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (03):
  • [38] Extended convergence for two-step methods with non-differentiable parts in Banach spaces
    Argyros, Ioannis K.
    George, Santhosh
    Senapati, Kedarnath
    JOURNAL OF ANALYSIS, 2024, 32 (02): : 697 - 709
  • [39] CONVERGENCE RESULTS FOR THE VECTOR PENALTY-PROJECTION AND TWO-STEP ARTIFICIAL COMPRESSIBILITY METHODS
    Angot, Philippe
    Fabrie, Pierre
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (05): : 1383 - 1405
  • [40] Performance Analysis of Two-Step Bi-Directional Relaying with Multiple Antennas
    Eslamifar, Mahshad
    Chin, Woon Hau
    Yuen, Chau
    Guan, Yong Liang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2012, 11 (12) : 4237 - 4242