A convergence analysis for directional two-step Newton methods

被引:9
|
作者
Argyros, Ioannis K. [1 ]
Hilout, Said [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Univ Poitiers, Lab Math & Applicat, F-86962 Futuroscope, France
关键词
Directional two-step Newton method; Hilbert space; Nonlinear equation; Lipschitz/center-Lipschitz condition; Recurrent functions; Recurrent sequences; Newton-Kantorovich-type hypotheses;
D O I
10.1007/s11075-010-9368-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A semilocal convergence analysis for directional two-step Newton methods in a Hilbert space setting is provided in this study. Two different techniques are used to generate the sufficient convergence results, as well as the corresponding error bounds. The first technique uses our new idea of recurrent functions, whereas the second uses recurrent sequences. We also compare the results of the two techniques.
引用
收藏
页码:503 / 528
页数:26
相关论文
共 50 条
  • [1] A convergence analysis for directional two-step Newton methods
    Ioannis K. Argyros
    Saïd Hilout
    Numerical Algorithms, 2010, 55 : 503 - 528
  • [2] Two-step Newton methods
    Magrenan Ruiz, Angel Alberto
    Argyros, Ioannis K.
    JOURNAL OF COMPLEXITY, 2014, 30 (04) : 533 - 553
  • [3] A SEMILOCAL CONVERGENCE ANALYSIS FOR DIRECTIONAL NEWTON METHODS
    Argyros, Ioannis K.
    MATHEMATICS OF COMPUTATION, 2011, 80 (273) : 327 - 343
  • [4] On the local convergence of fast two-step Newton-like methods for solving nonlinear equations
    Argyros, I. K.
    Hilout, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 245 : 1 - 9
  • [5] Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis
    Kumar, Abhimanyu
    Gupta, D. K.
    Martinez, Eulalia
    Singh, Sukhjit
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [6] Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis
    Abhimanyu Kumar
    D. K. Gupta
    Eulalia Martinez
    Sukhjit Singh
    Mediterranean Journal of Mathematics, 2018, 15
  • [7] Convergence and numerical analysis of a family of two-step Steffensen's methods
    Amat, S
    Busquier, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) : 13 - 22
  • [8] Local convergence of a relaxed two-step Newton like method with applications
    I. K. Argyros
    Á. A. Magreñán
    L. Orcos
    J. A. Sicilia
    Journal of Mathematical Chemistry, 2017, 55 : 1427 - 1442
  • [9] Local Convergence and the Dynamics of a Two-Step Newton-Like Method
    Argyros, Ioannis K.
    Alberto Magrenan, A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (05):
  • [10] Local convergence of a relaxed two-step Newton like method with applications
    Argyros, I. K.
    Magrenan, A. A.
    Orcos, L.
    Sicilia, J. A.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2017, 55 (07) : 1427 - 1442