Nanocomposite of Poly(Lactic Acid)/Cellulose Nanocrystals: Effect of CNC Content on the Polymer Crystallization Kinetics

被引:23
|
作者
Vestena, Mauro [1 ,2 ]
Gross, Idejan P. [1 ]
Mueller, Carmen M. O. [3 ]
Pires, Alfredo T. N. [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Quim, Grp Estudo Mat Polimer POLIMAT, BR-88040900 Florianopolis, SC, Brazil
[2] Univ Tecnol Fed Parana UTFPR, Dept Acad Quim, Campus Pato Branco, BR-85503390 Pato Branco, PR, Brazil
[3] Univ Fed Santa Catarina, Dept Ciencia & Tecnol Alimentos, BR-88034001 Florianopolis, SC, Brazil
关键词
cellulose nanocrystals; poly(lactic acid); crystallization kinetics; nanocomposites; CRYSTAL-STRUCTURE; CELLULOSE; MORPHOLOGY; BEHAVIOR;
D O I
10.5935/0103-5053.20150343
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The barrier and mechanical properties of polymer matrices are affected by the polymer crystallization kinetics and the incorporation of nanoparticles can modify the nucleation density as well as the rate and mechanism of crystallization. In this study, a nanocomposite of poly(lactic acid) (PLA) containing cellulose nanocrystals (CNC) was prepared in order to evaluate the effect of the CNC content on the crystallization kinetics of the polymer matrix. Dimethylformamide, a solvent of PLA, was used to replace the aqueous medium for the dispersion of the CNC, to facilitate the preparation of PLA films with dispersed CNC. Higher levels of CNC in the films induced an increase in the crystallization rate and reduced the degree of crystallinity without affecting the dimensions of the crystal lattice. In conclusion, the incorporation of CNC into PLA influences the crystallization kinetics, which significantly affects the PLA processing conditions.
引用
收藏
页码:905 / 911
页数:7
相关论文
共 50 条
  • [21] Enhanced thermal conductivity of poly(lactic acid)/alumina composite by synergistic effect of tuning crystallization of poly(lactic acid) crystallization and filler content
    Wen, Bianying
    Ma, Liubin
    Zou, Wenqi
    Zheng, Xiaolei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (08) : 6328 - 6338
  • [22] Surface modification of cellulose nanocrystals by grafting with poly(lactic acid)
    Peltzer, Mercedes
    Pei, Aihua
    Zhou, Qi
    Berglund, Lars
    Jimenez, Alfonso
    POLYMER INTERNATIONAL, 2014, 63 (06) : 1056 - 1062
  • [23] Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites
    Jamileh Shojaeiarani
    Dilpreet S. Bajwa
    Kerry Hartman
    Cellulose, 2019, 26 : 2349 - 2362
  • [24] Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites
    Shojaeiarani, Jamileh
    Bajwa, Dilpreet S.
    Hartman, Kerry
    CELLULOSE, 2019, 26 (04) : 2349 - 2362
  • [25] Crystallization kinetics of poly(lactic acid)-talc composites
    Battegazzore, D.
    Bocchini, S.
    Frache, A.
    EXPRESS POLYMER LETTERS, 2011, 5 (10): : 849 - 858
  • [26] Crystallization kinetics of virgin and processed poly(lactic acid)
    Pantani, R.
    De Santis, F.
    Sorrentino, A.
    De Maio, F.
    Titomanlio, G.
    POLYMER DEGRADATION AND STABILITY, 2010, 95 (07) : 1148 - 1159
  • [27] CRYSTALLIZATION KINETICS OF POLY(L-LACTIC ACID)
    VASANTHAKUMARI, R
    PENNINGS, AJ
    POLYMER, 1983, 24 (02) : 175 - 178
  • [28] Effect of cellulose nanocrystals derived from Dunaliella tertiolecta marine green algae residue on crystallization behaviour of poly(lactic acid)
    Mondal, Kona
    Sakurai, Shinichi
    Okahisa, Yoko
    Goud, Vaibhav V.
    Katiyar, Vimal
    CARBOHYDRATE POLYMERS, 2021, 261
  • [29] Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites
    Kamal, Musa R.
    Khoshkava, Vahid
    CARBOHYDRATE POLYMERS, 2015, 123 : 105 - 114
  • [30] Cellulose Nanofibrils Dewatered with Poly(Lactic Acid) for Improved Bio-Polymer Nanocomposite Processing
    Collins, Alexander
    Tajvidi, Mehdi
    NANOMATERIALS, 2024, 14 (17)