Nanocomposite of Poly(Lactic Acid)/Cellulose Nanocrystals: Effect of CNC Content on the Polymer Crystallization Kinetics

被引:23
|
作者
Vestena, Mauro [1 ,2 ]
Gross, Idejan P. [1 ]
Mueller, Carmen M. O. [3 ]
Pires, Alfredo T. N. [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Quim, Grp Estudo Mat Polimer POLIMAT, BR-88040900 Florianopolis, SC, Brazil
[2] Univ Tecnol Fed Parana UTFPR, Dept Acad Quim, Campus Pato Branco, BR-85503390 Pato Branco, PR, Brazil
[3] Univ Fed Santa Catarina, Dept Ciencia & Tecnol Alimentos, BR-88034001 Florianopolis, SC, Brazil
关键词
cellulose nanocrystals; poly(lactic acid); crystallization kinetics; nanocomposites; CRYSTAL-STRUCTURE; CELLULOSE; MORPHOLOGY; BEHAVIOR;
D O I
10.5935/0103-5053.20150343
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The barrier and mechanical properties of polymer matrices are affected by the polymer crystallization kinetics and the incorporation of nanoparticles can modify the nucleation density as well as the rate and mechanism of crystallization. In this study, a nanocomposite of poly(lactic acid) (PLA) containing cellulose nanocrystals (CNC) was prepared in order to evaluate the effect of the CNC content on the crystallization kinetics of the polymer matrix. Dimethylformamide, a solvent of PLA, was used to replace the aqueous medium for the dispersion of the CNC, to facilitate the preparation of PLA films with dispersed CNC. Higher levels of CNC in the films induced an increase in the crystallization rate and reduced the degree of crystallinity without affecting the dimensions of the crystal lattice. In conclusion, the incorporation of CNC into PLA influences the crystallization kinetics, which significantly affects the PLA processing conditions.
引用
收藏
页码:905 / 911
页数:7
相关论文
共 50 条
  • [1] Thermal degradation behaviour and crystallization kinetics of poly (lactic acid) and cellulose nanocrystals (CNC) based microcellular composite foams
    Borkotoky, Shasanka Sekhar
    Chakraborty, Gourhari
    Katiyar, Vimal
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 118 : 1518 - 1531
  • [2] Effect of cellulose nanocrystals (CNC) on isothermal crystallization kinetics of polypropylene
    Khoshkava, Vahid
    Ghasemi, Hesam
    Kamal, Musa R.
    THERMOCHIMICA ACTA, 2015, 608 : 30 - 39
  • [3] The Effect of Cellulose Nanocrystals (CNC) on Isothermal Crystallization Kinetics of LLDPE and HDPE
    Tan, V
    Abdallah, W.
    Kamal, M. R.
    INTERNATIONAL POLYMER PROCESSING, 2018, 33 (03) : 371 - 380
  • [4] Nanocomposite Fibers Electrospun from Poly(lactic acid)/Cellulose Nanocrystals
    Xiang, Chunhui
    Joo, Yong L.
    Frey, Margaret W.
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2009, 3 (02) : 147 - 155
  • [5] Performance of high lignin content cellulose nanocrystals in poly(lactic acid)
    Wei, Liqing
    Agarwal, Umesh P.
    Matuana, Laurent
    Sabo, Ronald C.
    Stark, Nicole M.
    POLYMER, 2018, 135 : 305 - 313
  • [6] Combined effect of cellulose nanocrystals and poly(butylene succinate) on poly(lactic acid) crystallization: The role of interfacial affinity
    Zhang, Xiaocan
    Shi, Jiafeng
    Ye, Haimu
    Dong, Yuhua
    Zhou, Qiong
    CARBOHYDRATE POLYMERS, 2018, 179 : 79 - 85
  • [7] Effect of Graphene Nanoplatelets on Crystallization Kinetics of Poly (lactic acid)
    Manafi, Pedram
    Ghasemi, Ismaeil
    Karrabi, Mohammad
    Azizi, Hamed
    Ehsaninamin, Parvin
    SOFT MATERIALS, 2014, 12 (04) : 433 - 444
  • [8] The effect of polymer grafting on the mechanical properties of PEG-grafted cellulose nanocrystals in poly(lactic acid)
    Macke, Nicholas
    Hemmingsen, Christina M.
    Rowan, Stuart J.
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (24) : 3318 - 3330
  • [9] Effect of electrospun stereocomplex PLA fibers and modified cellulose nanocrystals on crystallization of poly(L-lactic acid)
    Wan, Zhengwei
    Li, Meili
    Zhuang, Yaozhong
    Tong, Zaizai
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (19)
  • [10] Nucleation and crystallization kinetics of poly(lactic acid)
    De Santis, Felice
    Pantani, Roberto
    Titomanlio, Giuseppe
    THERMOCHIMICA ACTA, 2011, 522 (1-2) : 128 - 134