A NONCONFORMING CROUZEIX-RAVIART TYPE FINITE ELEMENT ON POLYGONAL MESHES

被引:3
|
作者
Wang, Yanqiu [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R China
关键词
2ND-ORDER ELLIPTIC PROBLEMS; STOKES EQUATIONS; GENERAL MESHES; ORDER; POLYTOPES; DISCRETIZATION; CONSTRUCTION; DIFFUSION;
D O I
10.1090/mcom/3334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonconforming lowest order Crouzeix-Raviart type finite element, based on the generalized barycentric coordinates, is constructed on general polygonal (convex or nonconvex) meshes. We reveal a fundamental difference of the Crouzeix-Raviart type degrees of freedom between polygons with odd and even number of vertices, which results in slightly different local constructions of finite elements on these two types of polygons. Because of this, the topological structure of connected regions consisting of polygons with even number of vertices plays an essential role in understanding the global finite element space. To analyze such a topological structure, a new technical tool using the concept of cochain complex and cohomology is developed. Despite the seemingly complicated theoretical analysis, implementation of the element is straightforward. The nonconforming finite element method has optimal a priori error estimates. Proof and supporting numerical results are presented.
引用
收藏
页码:237 / 271
页数:35
相关论文
共 50 条
  • [21] Orthogonality relations of Crouzeix-Raviart and Raviart-Thomas finite element spaces
    Bartels, Soren
    Wang, Zhangxian
    NUMERISCHE MATHEMATIK, 2021, 148 (01) : 127 - 139
  • [22] A new stabilization technique for the nonconforming Crouzeix-Raviart element applied to linear elasticity
    Lamichhane, Bishnu P.
    APPLIED MATHEMATICS LETTERS, 2015, 39 : 35 - 41
  • [23] Error analysis of Crouzeix-Raviart and Raviart-Thomas finite element methods
    Kobayashi, Kenta
    Tsuchiya, Takuya
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (03) : 1191 - 1211
  • [24] Crouzeix-Raviart Finite Element Approximation for the Parabolic Obstacle Problem
    Gudi, Thirupathi
    Majumder, Papri
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (02) : 273 - 292
  • [25] A COUPLED METHOD COMBINING CROUZEIX-RAVIART NONCONFORMING AND NODE CONFORMING FINITE ELEMENT SPACES FOR BOIT CONSOLIDATION MODEL
    Zeng, Yuping
    Cai, Mingchao
    Zhong, Liuqiang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (04): : 911 - 931
  • [26] Mortar finite volume element method with Crouzeix-Raviart element for parabolic problems
    Bi, Chunjia
    Chen, Wenbin
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (11) : 1642 - 1657
  • [27] The Lower/Upper Bound Property of the Crouzeix-Raviart Element Eigenvalues on Adaptive Meshes
    Yang, Yidu
    Han, Jiayu
    Bi, Hai
    Yu, Yuanyuan
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (01) : 284 - 299
  • [28] New quadratic and cubic polynomial enrichments of the Crouzeix-Raviart finite element
    Dell'Accio, Francesco
    Guessab, Allal
    Nudo, Federico
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 170 : 204 - 212
  • [29] A stabilized nonconforming Crouzeix-Raviart finite element method for the elasticity eigenvalue problem with the pure traction boundary condition
    Zhang, Xuqing
    Han, Jiayu
    Yang, Yidu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 17615 - 17631
  • [30] ADAPTIVE CROUZEIX-RAVIART BOUNDARY ELEMENT METHOD
    Heuer, Norbert
    Karkulik, Michael
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (04): : 1193 - 1217