Nonconforming finite element approximation of crystalline microstructure

被引:35
|
作者
Li, B
Luskin, M
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
finite element; nonconforming; microstructure; martensitic transformation; error estimate;
D O I
10.1090/S0025-5718-98-00941-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of nonconforming finite element approximations of a simply laminated microstructure which minimizes the nonconvex variational problem for the deformation of martensitic crystals which can undergo either an orthorhombic to monoclinic (double well) or a cubic to tetragonal (triple well) transformation. We first establish a series of error bounds in terms of elastic energies for the L-2 approximation of derivatives of the deformation in the direction tangential to parallel layers of the laminate, for the L-2 approximation of the deformation, for the weak approximation of the deformation gradient, for the approximation of volume fractions of deformation gradients, and for the approximation of nonlinear integrals of the deformation gradient. We then use these bounds to give corresponding convergence rates for quasi-optimal finite element approximations.
引用
收藏
页码:917 / 946
页数:30
相关论文
共 50 条
  • [21] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Xie, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    APPLICATIONS OF MATHEMATICS, 2009, 54 (01) : 1 - 15
  • [22] Nonconforming Quasi-Wilson finite element approximation for the nonlinear Rosenau equation
    Shi, Dongyang
    Jia, Xu
    APPLIED MATHEMATICS LETTERS, 2021, 119
  • [23] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Shanghui Jia
    Hehu Xie
    Xiaobo Yin
    Shaoqin Gao
    Applications of Mathematics, 2009, 54 : 1 - 15
  • [24] Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Me, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) : 435 - 448
  • [25] EQ1rot nonconforming finite element approximation to Signorini problem
    SHI DongYang
    XU Chao
    ScienceChina(Mathematics), 2013, 56 (06) : 1297 - 1307
  • [26] Coefficient Jump-Independent Approximation of the Conforming and Nonconforming Finite Element Solutions
    Zhang, Shangyou
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (05) : 722 - 736
  • [27] EQ1rot nonconforming finite element approximation to Signorini problem
    Shi DongYang
    Xu Chao
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (06) : 1301 - 1311
  • [28] EQ1rot nonconforming finite element approximation to Signorini problem
    DongYang Shi
    Chao Xu
    Science China Mathematics, 2013, 56 : 1301 - 1311
  • [29] Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow
    Dörfler, W
    Ainsworth, M
    MATHEMATICS OF COMPUTATION, 2005, 74 (252) : 1599 - 1619
  • [30] NUMERICAL APPROXIMATION OF THE ELLIPTIC EIGENVALUE PROBLEM BY STABILIZED NONCONFORMING FINITE ELEMENT METHOD
    Weng, Zhifeng
    Zhai, Shuying
    Zeng, Yuping
    Yue, Xiaoqiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1161 - 1176