A hybrid multiobjective evolutionary algorithm: Striking a balance with local search

被引:6
|
作者
Ahn, Chang Wook [2 ]
Kim, Eungyeong [2 ]
Kim, Hyun-Tae [2 ]
Lim, Dong-Hyun [2 ]
An, Jinung [1 ]
机构
[1] DGIST, Taegu 704948, South Korea
[2] Sungkyunkwan Univ, Sch Informat & Commun Engn, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Multiobjective optimization; Evolutionary algorithms; Knapsack problem; Nondominated solutions; Weighted fitness; Local search; GENETIC ALGORITHM; OPTIMIZATION ALGORITHM; DIVERSITY; STRENGTH; RANK;
D O I
10.1016/j.mcm.2010.06.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a hybrid multiobjective evolutionary algorithm (HMEA) that efficiently deals with multiobjective optimization problems (MOPs). The aim is to discover new nondominated solutions in the neighborhood of the most promising individuals in order to effectively push individuals toward the global Pareto front. It can be achieved by bringing the strength of an adaptive local search (ALS) to bear upon the evolutionary multiobjective optimization. The ALS is devised by combining a weighted fitness strategy and a knowledge-based local search which does not incur any significant computational cost. To be more exact, the highly converged and less crowded solutions selected in accordance with the weighted fitness values are improved by the local search, thereby helping multiobjective evolutionary algorithms (MEAs) to economize on the search time and traverse the search space. Thus, the proposed HMEA that transplants the ALS to the framework of MEAs can achieve higher proximity and better diversity of nondominated solutions. To show the utility of HMEA, the ALS for multiobjective knapsack problems (MKPs) is developed by exploiting the problem's knowledge. Experimental results on the MKPs have provided evidence for its effectiveness as regards the proximity and the diversity performances. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2048 / 2059
页数:12
相关论文
共 50 条
  • [31] MEALS: A multiobjective evolutionary algorithm with local search for solving the bi-objective ring star problem
    Calvete, Herminia I.
    Gale, Carmen
    Iranzo, Jose A.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 250 (02) : 377 - 388
  • [32] Multiobjective Local Search Based Hybrid Algorithm for Vehicle Routing Problem with Soft Time Windows
    Bouchra, Bouziyane
    Btissam, Dkhissi
    Mohammad, Cherkaoui
    BIG DATA, CLOUD AND APPLICATIONS, BDCA 2018, 2018, 872 : 312 - 325
  • [33] Robust Structural Balance in Signed Networks Using a Multiobjective Evolutionary Algorithm
    Wang, Shuai
    Liu, Jing
    Jin, Yaochu
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2020, 15 (02) : 24 - 35
  • [34] An hybrid evolutionary multiobjective algorithm for multiuser margin maximization in DSL
    Gomes, Ana
    Monteiro, Marcio
    Dortschy, Boris
    Klautau, Aldebaro
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2016, 29 (01) : 194 - 209
  • [35] Multiobjective Evolutionary Algorithm Based on Hybrid Individual Selection Mechanism
    Chen X.-J.
    Shi C.
    Zhou A.-M.
    Wu B.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (12): : 3651 - 3664
  • [36] A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm
    Zhu, Qingling
    Lin, Qiuzhen
    Du, Zhihua
    Liang, Zhengping
    Wang, Wenjun
    Zhu, Zexuan
    Chen, Jianyong
    Huang, Peizhi
    Ming, Zhong
    INFORMATION SCIENCES, 2016, 345 : 177 - 198
  • [37] Hybrid Sampling Strategy-based Multiobjective Evolutionary Algorithm
    Zhang, Wenqiang
    Lin, Lin
    Gen, Mitsuo
    Chien, Chen-Fu
    COMPLEX ADAPTIVE SYSTEMS 2012, 2012, 12 : 96 - 101
  • [38] Multiobjective optimal power flow using hybrid evolutionary Algorithm
    Alawode Kehinde, O.
    Jubril Abimbola, M.
    Komolafe Olusola, A.
    World Academy of Science, Engineering and Technology, 2009, 39 : 790 - 795
  • [39] Multiplex PCR assay design by hybrid multiobjective evolutionary algorithm
    Lee, In-Hee
    Shin, Soo-Yong
    Zhang, Byoung-Tak
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 376 - +
  • [40] A multiobjective hybrid evolutionary algorithm for robust design of distribution networks
    Carrano, Eduardo G.
    Taroco, Cristiane G.
    Neto, Oriane M.
    Takahashi, Ricardo H. C.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 63 : 645 - 656