Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells

被引:133
|
作者
Meyer, Mark B. [1 ]
Benkusky, Nancy A. [1 ]
Sen, Buer [2 ]
Rubin, Janet [2 ]
Pike, J. Wesley [1 ]
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[2] Univ N Carolina, Dept Med, Chapel Hill, NC 27514 USA
基金
美国国家卫生研究院;
关键词
adipocyte; cell differentiation; ChIP-sequencing (ChIP-seq); histone modification; mesenchymal stem cells (MSCs); osteoblast; VITAMIN-D-RECEPTOR; TRANSCRIPTION FACTOR-BINDING; BONE-MARROW; 1,25-DIHYDROXYVITAMIN D-3; GENE-EXPRESSION; PPAR-GAMMA; SIGNALING PATHWAY; FAT ACCUMULATION; CIRCADIAN CLOCK; ADIPOSE-TISSUE;
D O I
10.1074/jbc.M116.736538
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Terminal differentiation of multipotent stem cells is achieved through a coordinated cascade of activated transcription factors and epigenetic modifications that drive gene transcription responsible for unique cell fate. Within the mesenchymal lineage, factors such as RUNX2 and PPAR are indispensable for osteogenesis and adipogenesis, respectively. We therefore investigated genomic binding of transcription factors and accompanying epigenetic modifications that occur during osteogenic and adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (MSCs). As assessed by ChIP-sequencing and RNA-sequencing analyses, we found that genes vital for osteogenic identity were linked to RUNX2, C/EBP, retinoid X receptor, and vitamin D receptor binding sites, whereas adipocyte differentiation favored PPAR, retinoid X receptor, C/EBP, and C/EBP binding sites. Epigenetic marks were clear predictors of active differentiation loci as well as enhancer activities and selective gene expression. These marrow-derived MSCs displayed an epigenetic pattern that suggested a default preference for the osteogenic pathway; however, these patterns were rapidly altered near the Adipoq, Cidec, Fabp4, Lipe, Plin1, Pparg, and Cebpa genes during adipogenic differentiation. Surprisingly, we found that these cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment, as assessed by staining, gene expression, and ChIP-quantitative PCR analysis. The osteogenic default pathway may be subverted during pathological conditions, leading to skeletal fragility and increased marrow adiposity during aging, estrogen deficiency, and skeletal unloading. Taken together, our data provide an increased mechanistic understanding of the epigenetic programs necessary for multipotent differentiation of MSCs that may prove beneficial in the development of therapeutic strategies.
引用
收藏
页码:17829 / 17847
页数:19
相关论文
共 50 条
  • [31] Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold
    Matta, Csaba
    Szucs-Somogyi, Csilla
    Kon, Elizaveta
    Robinson, Dror
    Neufeld, Tova
    Altschuler, Nir
    Berta, Agnes
    Hangody, Laszlo
    Vereb, Zoltan
    Zakany, Roza
    DIFFERENTIATION, 2019, 107 : 24 - 34
  • [32] The adipogenic effect of palmitate in mouse bone marrow-derived mesenchymal stem cells
    Eun Young Park
    Chung Eun Yeum
    Gimoon Seo
    Ji-Yeh Lee
    Seong-Beom Lee
    Gue-Tae Chae
    Tissue Engineering and Regenerative Medicine, 2013, 10 : 77 - 85
  • [33] Potentiation of osteoclastogenesis by adipogenic conversion of bone marrow-derived mesenchymal stem cells
    Mori, Keisuke
    Suzuki, Keiji
    Hozumi, Akira
    Goto, Hisataka
    Tomita, Masato
    Koseki, Hironobu
    Yamashita, Shunichi
    Osaki, Makoto
    BIOMEDICAL RESEARCH-TOKYO, 2014, 35 (02): : 153 - 159
  • [34] Mechanical Strain Regulates Osteogenic and Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
    Li, Runguang
    Liang, Liang
    Dou, Yonggang
    Huang, Zeping
    Mo, Huiting
    Wang, Yaning
    Yu, Bin
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [35] The Adipogenic Effect of Palmitate in Mouse Bone Marrow-Derived Mesenchymal Stem Cells
    Park, Eun Young
    Yeum, Chung Eun
    Seo, Gimoon
    Lee, Ji-Yeh
    Lee, Seong-Beom
    Chae, Gue-Tae
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2013, 10 (02) : 77 - 85
  • [36] Adipogenic effect of alcohol on human bone marrow-derived mesenchymal stem cells
    Wezeman, FH
    Gong, ZD
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2004, 28 (07) : 1091 - 1101
  • [37] Expansion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells on a vitamin C functionalized polymer
    Wang, YZ
    Singh, A
    Xu, P
    Pindrus, MA
    Blasioli, DJ
    Kaplan, DL
    BIOMATERIALS, 2006, 27 (17) : 3265 - 3273
  • [38] Osteogenic differentiation potential of human bone marrow-derived mesenchymal stem cells enhanced by bacoside-A
    Ramesh, Thiyagarajan
    CELL BIOCHEMISTRY AND FUNCTION, 2021, 39 (01) : 148 - 158
  • [39] Suppression of ornithine decarboxylase promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells
    Tsai, Yo-Hsian
    Lin, Kuan-Lian
    Huang, Yuan-Pin
    Hsu, Yi-Chiang
    Chen, Chung-Hwan
    Chen, Yuhsin
    Sie, Min-Hua
    Wang, Gwo-Jaw
    Lee, Mon-Juan
    FEBS LETTERS, 2015, 589 (16): : 2058 - 2065
  • [40] Plasticity of marrow-derived stem cells
    D S Krause
    Gene Therapy, 2002, 9 : 754 - 758