Positive solutions for a class of nonlocal problems with possibly singular nonlinearity

被引:1
|
作者
Gasinski, Leszek [1 ]
Santos Junior, Joao R. [2 ]
Siciliano, Gaetano [3 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] Univ Fed Para, Fac Matemat, Inst Ciencias Exatas & Nat, Ave Augusto Correa 01, BR-66075110 Belem, Para, Brazil
[3] Univ Sao Paulo, Inst Matemat & Estat, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Problems with nonlocal terms; multiple asymptotic behaviour; multiplicity result; fixed point methods;
D O I
10.1007/s11784-022-00982-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of elliptic problems with homogeneous Dirichlet boundary condition and a nonlinear reaction term f which is nonlocal depending on the L-p-norm of the unknown function. The nonlinearity f can make the problem degenerate since it may even have multiple singularities in the nonlocal variable. We use fixed point arguments for an appropriately defined solution map, to produce multiplicity of classical positive solutions with ordered norms.
引用
收藏
页数:15
相关论文
共 50 条