Exactly Solvable Schrodinger Operators

被引:37
|
作者
Derezinski, Jan [1 ]
Wrochna, Michal [2 ]
机构
[1] Univ Warsaw, Fac Phys, Dept Math Methods Phys, PL-00682 Warsaw, Poland
[2] Univ Gottingen, Inst Math, RTG Math Struct Modern Quantum Phys, D-37073 Gottingen, Germany
来源
ANNALES HENRI POINCARE | 2011年 / 12卷 / 02期
关键词
QUANTUM-MECHANICS; POTENTIALS;
D O I
10.1007/s00023-011-0077-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We systematically describe and classify one-dimensional Schrodinger equations that can be solved in terms of hypergeometric type functions. Beside the well-known families, we explicitly describe two new classes of exactly solvable Schrodinger equations that can be reduced to the Hermite equation.
引用
收藏
页码:397 / 418
页数:22
相关论文
共 50 条
  • [41] Tavis-Cummings models and their quasi-exactly solvable Schrodinger Hamiltonians
    Mohamadian, T.
    Negro, J.
    Nieto, L. M.
    Panahi, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (07):
  • [42] Exactly Solvable Schrodinger Equation for a Class of Multiparameter Exponential-Type Potentials
    Garcia-Martinez, J.
    Garcia-Ravelo, J.
    Morales, J.
    Pena, J. J.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (01) : 195 - 200
  • [43] An exactly solvable model for dimension-six Higgs operators and h → γγ
    Manohar, Aneesh V.
    PHYSICS LETTERS B, 2013, 726 (1-3) : 347 - 351
  • [44] Exactly solvable schrodinger equations with a position-dependent mass:: Null potential
    Pena, J. J.
    Ovando, G.
    Morales, J.
    Garcia-Ravelo, J.
    Pacheco-Garcia, C.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (15) : 3039 - 3045
  • [45] EXACTLY SOLVABLE MODELS FOR THE SCHRODINGER-EQUATION FROM GENERALIZED DARBOUX TRANSFORMATIONS
    SCHNIZER, WA
    LEEB, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (19): : 5145 - 5156
  • [46] Lie superalgebras of differential operators and quasi-exactly solvable systems
    Finkel, F
    Gonzalez-Lopez, A
    Rodriguez, MA
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 257 - 259
  • [47] Homogenized Spectral Problems for Exactly Solvable Operators: Asymptotics of Polynomial Eigenfunctions
    Borcea, Julius
    Bogvad, Rikard
    Shapiro, Boris
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2009, 45 (02) : 525 - 568
  • [48] Exactly soluble periodic two-dimensional Schrodinger operators
    Veselov, AP
    Novikov, SP
    RUSSIAN MATHEMATICAL SURVEYS, 1995, 50 (06) : 1316 - 1317
  • [49] Effective mass Schrodinger equation for exactly solvable class of one-dimensional potentials
    Aktas, Metin
    Sever, Ramazan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (01) : 92 - 100
  • [50] An exactly solvable Schrodinger equation with finite positive position-dependent effective mass
    Levai, G.
    Ozer, O.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)