This paper presents measurements of the speed of sound in two-phase flows characterized by high void fraction. The main objective of the work is the characterization of wave propagation in cavitating flows. The experimental determination of the speed of sound is derived from measurements performed with three pressure transducers, while the void fraction is obtained from analysis of a signal obtained with an optical probe. Experiments are first conducted in air/water mixtures, for a void fraction varying in the range 0-11%, in order to discuss and validate the methods of measurement and analysis. These results are compared to existing theoretical models, and a nice agreement is obtained. Then, the methods are applied to various cavitating flows. The evolution of the speed of sound according to the void fraction alpha is determined for alpha varying in the range 0-55%. In this second configuration, the effect of the Mach number is included in the spectral analysis of the pressure transducers' signals, in order to take into account the possible high flow compressibility. The experimental data are compared to existing theoretical models, and the results are then discussed.