On analytic and meromorphic functions and spaces of QK-type

被引:90
|
作者
Essén, M
Wulan, H
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
关键词
D O I
10.1215/ijm/1258138477
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from a nondecreasing function K : [0, infinity) --> [0, infinity), we introduce a Mobius-invariant Banach space Q(K). of functions analytic in the unit disk in the plane. We develop a general theory of these spaces, which yields new results and also, for special choices of K, gives most basic properties of Q(p)-spaces. We have found a general criterion on the kernels K-1 and K-2, K-1 less than or equal to K-2, such that Q(K2) not subset of or equal to Q(K1), as well as necessary and sufficient conditions on K so that Q(K) = B or Q(K) = D, where the Bloch space 5 and the Dirichlet space D are the largest, respectively smallest:, spaces of Q(K)-type. We also consider the meromorphic counterpart Q(K)(#) of Q(K) and discuss the differences between Q(K)-spaces and Q(K)(#)-classes
引用
收藏
页码:1233 / 1258
页数:26
相关论文
共 50 条
  • [21] ON SOME PROPERTIES OF ANALYTIC AND MEROMORPHIC FUNCTIONS
    Nunokawa, M.
    Goyal, S. P.
    Kumar, R.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (03): : 159 - 164
  • [22] CONVERGENCE OF SEQUENCES OF ANALYTIC AND MEROMORPHIC FUNCTIONS
    TUMARKIN, GT
    DOKLADY AKADEMII NAUK SSSR, 1959, 129 (02): : 280 - 283
  • [23] MEROMORPHIC MAPPINGS INTO TAUT COMPLEX ANALYTIC SPACES
    URATA, T
    NAGOYA MATHEMATICAL JOURNAL, 1973, 50 (JUN) : 49 - 65
  • [24] Mixed norm spaces of analytic functions as spaces of generalized fractional derivatives of functions in Hardy type spaces
    Alexey Karapetyants
    Stefan Samko
    Fractional Calculus and Applied Analysis, 2017, 20 : 1106 - 1130
  • [25] MIXED NORM SPACES OF ANALYTIC FUNCTIONS AS SPACES OF GENERALIZED FRACTIONAL DERIVATIVES OF FUNCTIONS IN HARDY TYPE SPACES
    Karapetyants, Alexey
    Samko, Stefan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) : 1106 - 1130
  • [26] Spaces of analytic functions of Hardy-Bloch type
    Daniel Girela
    Miroslav Pavlović
    José Ángel Peláez
    Journal d’Analyse Mathématique, 2006, 100
  • [27] The Cesaro operator on Korenblum type spaces of analytic functions
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    COLLECTANEA MATHEMATICA, 2018, 69 (02) : 263 - 281
  • [28] MONOMIAL BASIS IN KORENBLUM TYPE SPACES OF ANALYTIC FUNCTIONS
    Bonet, Jose
    Lusky, Wolfgang
    Taskinen, Jari
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (12) : 5269 - 5278
  • [29] Spaces of analytic functions of Hardy-Bloch type
    Girela, Daniel
    Pavlovic, Miroslav
    Pelaez, Jose Angel
    JOURNAL D ANALYSE MATHEMATIQUE, 2006, 100 (1): : 53 - 81
  • [30] On the Characterization of Triebel–Lizorkin Type Spaces of Analytic Functions
    Eskil Rydhe
    Journal of Fourier Analysis and Applications, 2018, 24 : 1491 - 1517