On analytic and meromorphic functions and spaces of QK-type

被引:90
|
作者
Essén, M
Wulan, H
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
关键词
D O I
10.1215/ijm/1258138477
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from a nondecreasing function K : [0, infinity) --> [0, infinity), we introduce a Mobius-invariant Banach space Q(K). of functions analytic in the unit disk in the plane. We develop a general theory of these spaces, which yields new results and also, for special choices of K, gives most basic properties of Q(p)-spaces. We have found a general criterion on the kernels K-1 and K-2, K-1 less than or equal to K-2, such that Q(K2) not subset of or equal to Q(K1), as well as necessary and sufficient conditions on K so that Q(K) = B or Q(K) = D, where the Bloch space 5 and the Dirichlet space D are the largest, respectively smallest:, spaces of Q(K)-type. We also consider the meromorphic counterpart Q(K)(#) of Q(K) and discuss the differences between Q(K)-spaces and Q(K)(#)-classes
引用
收藏
页码:1233 / 1258
页数:26
相关论文
共 50 条
  • [1] Distances from Bloch Functions to QK-Type Spaces
    Zengjian Lou
    Wufu Chen
    Integral Equations and Operator Theory, 2010, 67 : 171 - 181
  • [2] DUALITY OF QK-TYPE SPACES
    Zhan, Mujun
    Cao, Guangfu
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (05) : 1411 - 1423
  • [3] Some results on QK-type spaces
    Wulan, H
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS AND APPLICATIONS, 2004, : 245 - 252
  • [4] Bergman-Type and Qk-Type Spaces of p-Harmonic Functions
    Fu, Xi
    Xie, Xiaoqiang
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (03): : 191 - 203
  • [5] The corona theorem for bounded analytic functions in QK type spaces
    Pan, Weiye
    Wulan, Hasi
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (08) : 1245 - 1269
  • [6] Inner functions in QK type spaces
    Yang, Congli
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2011, 9 (03): : 305 - 322
  • [7] Lipschitz spaces and QK type spaces
    LI Hao 1
    2 School of Sciences
    ScienceChina(Mathematics), 2010, 53 (03) : 771 - 778
  • [8] Lipschitz spaces and QK type spaces
    Li Hao
    Wulan, Hasi
    Zhou JiZhen
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (03) : 771 - 778
  • [9] CRITERIA FOR AN ANALYTIC FUNCTION BELONGING TO THE QK SPACES
    Hasi Wulan
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (01) : 33 - 44
  • [10] Lipschitz spaces and QK type spaces
    Hao Li
    Hasi Wulan
    JiZhen Zhou
    Science China Mathematics, 2010, 53 : 771 - 778