A tutorial on branch and cut algorithms for the maximum stable set problem

被引:24
|
作者
Rebennack, Steffen [1 ]
Reinelt, Gerhard [2 ]
Pardalos, Panos M. [3 ]
机构
[1] Colorado Sch Mines, Div Econ & Business, Golden, CO 80401 USA
[2] Heidelberg Univ, Discrete Optimizat Res Grp, Heidelberg, Germany
[3] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
关键词
branch and cut; clique; cutting plane; separation; stable set; stable set polytope; TRAVELING SALESMAN PROBLEM; CLIQUE PROBLEM; WHEEL INEQUALITIES; OPTIMIZATION; RELAXATIONS; SEPARATION; POLYTOPES; GRAPHS;
D O I
10.1111/j.1475-3995.2011.00805.x
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This tutorial provides an overview of various characteristics of effective branch and cut type algorithms for the maximum stable set problem. We discuss several facet-defining inequalities for the stable set polytope along with their separation routines. In particular, we review implementation tweaks for the separation routines and reference empirical studies, illustrating the performance of these cutting planes for benchmark graphs. In addition to the polyhedral study, we present basic preprocessing, discuss heuristic methods particularly suited within a branch and cut framework, and examine a branching rule.
引用
收藏
页码:161 / 199
页数:39
相关论文
共 50 条
  • [21] A Tutorial on Quantum Approximate Optimization Algorithm for Maximum Independent Set Problem
    Yang, Mingyu
    Gao, Fang
    Wu, Guojian
    Dai, Wei
    Shuang, Feng
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6317 - 6322
  • [22] A branch-and-cut algorithm for the maximum benefit Chinese postman problem
    Corberan, Angel
    Plana, Isaac
    Rodriguez-Chia, Antonio M.
    Sanchis, Jose M.
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 21 - 48
  • [23] A branch-and-cut algorithm for the maximum benefit Chinese postman problem
    Ángel Corberán
    Isaac Plana
    Antonio M. Rodríguez-Chía
    José M. Sanchis
    Mathematical Programming, 2013, 141 : 21 - 48
  • [24] Handelman's hierarchy for the maximum stable set problem
    Laurent, Monique
    Sun, Zhao
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 60 (03) : 393 - 423
  • [25] POLYNOMIALLY SOLVABLE CASES FOR THE MAXIMUM STABLE SET PROBLEM
    HERTZ, A
    DISCRETE APPLIED MATHEMATICS, 1995, 60 (1-3) : 195 - 210
  • [26] Handelman’s hierarchy for the maximum stable set problem
    Monique Laurent
    Zhao Sun
    Journal of Global Optimization, 2014, 60 : 393 - 423
  • [27] An Augmentation Algorithm for the Maximum Weighted Stable Set Problem
    Carlo Mannino
    Egidio Stefanutti
    Computational Optimization and Applications, 1999, 14 : 367 - 381
  • [28] THE STRUCTION ALGORITHM FOR THE MAXIMUM STABLE SET PROBLEM REVISITED
    HOKE, KW
    TROYON, MF
    DISCRETE MATHEMATICS, 1994, 131 (1-3) : 105 - 113
  • [29] An augmentation algorithm for the maximum weighted stable set problem
    Mannino, C
    Stefanutti, E
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 14 (03) : 367 - 381