Dynamic testing of nonlinear vibrating structures using nonlinear normal modes

被引:135
|
作者
Peeters, M. [1 ]
Kerschen, G. [1 ]
Golinval, J. C. [1 ]
机构
[1] Univ Liege, Struct Dynam Res Grp, Dept Aerosp & Mech Engn, B-4000 Liege, Belgium
关键词
MODAL IDENTIFICATION; WAVELET TRANSFORM; GEOMETRICAL NONLINEARITY; FORCE APPROPRIATION; PART II; SYSTEMS;
D O I
10.1016/j.jsv.2010.08.028
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Modal testing and analysis is well-established for linear systems. The objective of this paper is to progress toward a practical experimental modal analysis (EMA) methodology of nonlinear mechanical structures. In this context, nonlinear normal modes (NNMs) offer a solid theoretical and mathematical tool for interpreting a wide class of nonlinear dynamical phenomena, yet they have a clear and simple conceptual relation to the classical linear normal modes (LNMs). A nonlinear extension of force appropriation techniques is developed in this study in order to isolate one single NNM during the experiments. With the help of time-frequency analysis, the energy dependence of NNM modal curves and their frequencies of oscillation are then extracted from the time series. The proposed methodology is demonstrated using two numerical benchmarks, a two-degree-of-freedom system and a planar cantilever beam with a cubic spring at its free end. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:486 / 509
页数:24
相关论文
共 50 条
  • [31] Active parameter control of nonlinear vibrating structures
    Masri, S. F.
    Miller, R. K.
    Dehghanyar, T. J.
    Caughey, T. K.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1989, 56 (03): : 658 - 666
  • [33] Nonlinear modal testing of structures with nonlinear dissipation
    Scheel, M.
    Krack, M.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2020) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2020), 2020, : 2087 - 2094
  • [34] Phase resonance testing of highly flexible structures: Measurement of conservative nonlinear modes and nonlinear damping identification
    Debeurre, Marielle
    Benacchio, Simon
    Grolet, Aurelien
    Grenat, Clement
    Giraud-Audine, Christophe
    Thomas, Olivier
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 215
  • [35] NONLINEAR DYNAMIC STRUCTURES
    GALLANT, AR
    ROSSI, PE
    TAUCHEN, G
    ECONOMETRICA, 1993, 61 (04) : 871 - 907
  • [36] Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems
    Mikhlin, Yu V.
    Perepelkin, N. V.
    Klimenko, A. A.
    Harutyunyan, E.
    MODERN PRACTICE IN STRESS AND VIBRATION ANALYSIS 2012 (MPSVA 2012), 2012, 382
  • [37] A nonlinear subspace-prediction error method for identification of nonlinear vibrating structures
    Wei, S.
    Peng, Z. K.
    Dong, X. J.
    Zhang, W. M.
    NONLINEAR DYNAMICS, 2018, 91 (03) : 1605 - 1617
  • [38] A nonlinear subspace-prediction error method for identification of nonlinear vibrating structures
    S. Wei
    Z. K. Peng
    X. J. Dong
    W. M. Zhang
    Nonlinear Dynamics, 2018, 91 : 1605 - 1617
  • [39] Vibrational dynamics of vocal folds using nonlinear normal modes
    Pinheiro, Alan P.
    Kerschen, Gaetan
    MEDICAL ENGINEERING & PHYSICS, 2013, 35 (08) : 1079 - 1088
  • [40] PREDICTION OF ISOLATED RESONANCE CURVES USING NONLINEAR NORMAL MODES
    Kuether, R. J.
    Renson, L.
    Detroux, T.
    Grappasonni, C.
    Kerschen, G.
    Allen, M. S.
    INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 6, 2016,