DEEP LEARNING FOR VEHICLE DETECTION IN AERIAL IMAGES

被引:0
|
作者
Yang, Michael Ying [1 ]
Liao, Wentong [2 ]
Li, Xinbo [2 ]
Rosenhahn, Bodo [2 ]
机构
[1] Univ Twente, Scene Understanding Grp, Enschede, Netherlands
[2] Leibniz Univ Hannover, Inst Informat Proc, Hannover, Germany
关键词
Vehicle detection; convolutional neural network; focal loss; ITCVD dataset;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The detection of vehicles in aerial images is widely applied in many domains. In this paper, we propose a novel double focal loss convolutional neural network framework (DFL-CNN). In the proposed framework, the skip connection is used in the CNN structure to enhance the feature learning. Also, the focal loss function is used to substitute for conventional cross entropy loss function in both of the region proposed network and the final classifier. We further introduce the first large-scale vehicle detection dataset ITCVD with ground truth annotations for all the vehicles in the scene. The experimental results show that our DFL-CNN outperforms the baselines on vehicle detection.
引用
收藏
页码:3079 / 3083
页数:5
相关论文
共 50 条
  • [41] Vehicle Detection from Unmanned Aerial Images with Deep Mask R-CNN
    Yayla, Ridvan
    Albayrak, Emir
    Yuzgec, Ugur
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2022, 30 (02) : 148 - 169
  • [42] An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images
    Shen, Jiaquan
    Zhou, Wangcheng
    Liu, Ningzhong
    Sun, Han
    Li, Deguang
    Zhang, Yongxin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 24330 - 24342
  • [43] Object Detection and Trajectory Prediction of Unmanned Aerial Vehicle Using Deep Learning
    Aote, Shailendra S.
    Panpaliya, Samiksha
    Hedaoo, Nilanshu
    Mane, Shantanu
    Pathak, Sagar
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 2, SMARTCOM 2024, 2024, 946 : 225 - 235
  • [44] Vehicle detection on unmanned aerial vehicle images based on saliency region detection
    Li W.
    Qu F.
    Liu P.
    International Journal of Performability Engineering, 2019, 15 (02): : 688 - 699
  • [45] Cotton Crop Disease Detection on Remotely Collected Aerial Images with Deep Learning
    Qian, Quandong
    Yu, Kevin
    Yadav, Pappu K.
    Dhal, Sambandh
    Kalafatis, Stavros
    Thomasson, J. Alex
    Hardin, Robert G.
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING VII, 2022, 12114
  • [46] Deep learning based multi-category object detection in aerial images
    Sommer, Lars W.
    Schuchert, Tobias
    Beyerer, Juergen
    AUTOMATIC TARGET RECOGNITION XXVII, 2017, 10202
  • [47] Deep Learning Approaches on Defect Detection in High Resolution Aerial Images of Insulators
    Wen, Qiaodi
    Luo, Ziqi
    Chen, Ruitao
    Yang, Yifan
    Li, Guofa
    SENSORS, 2021, 21 (04) : 1 - 26
  • [48] Application of Deep Learning on UAV-Based Aerial Images for Flood Detection
    Munawar, Hafiz Suliman
    Ullah, Fahim
    Qayyum, Siddra
    Heravi, Amirhossein
    SMART CITIES, 2021, 4 (03): : 1220 - 1242
  • [49] PEDESTRIAN DETECTION IN AERIAL IMAGES USING VANISHING POINT TRANSFORMATION AND DEEP LEARNING
    Chang, Ya-Ching
    Chen, Hua-Tsung
    Chuang, Jen-Hui
    Liao, I-Chun
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1917 - 1921
  • [50] A survey of deep learning techniques for vehicle detection from UAV images
    Srivastava, Srishti
    Narayan, Sarthak
    Mittal, Sparsh
    JOURNAL OF SYSTEMS ARCHITECTURE, 2021, 117