Object recognition and pose estimation from 3D-geometric relations

被引:0
|
作者
Hillenbrand, U [1 ]
Hirzinger, G [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82230 Wessling, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method for object recognition and pose estimation from noisy range data as provided by stereo processing. From the range data, points of high surface curvature are estimated. By comparing three-point geometric relations, hypothetical correspondences are established between data and model points of high curvature. The hypothetical correspondences give rise to pose hypotheses which are evaluated with respect to the raw range data using a crude surface model. We show examples that demonstrate the method's tolerance to noise and occlusion.
引用
收藏
页码:113 / 116
页数:4
相关论文
共 50 条
  • [41] Pose-RCNN: Joint Object Detection and Pose Estimation Using 3D Object Proposals
    Braun, Markus
    Rao, Qing
    Wang, Yikang
    Flohr, Fabian
    2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2016, : 1546 - 1551
  • [42] What and where: 3D object recognition with accurate pose
    Gordon, Iryna
    Lowe, David G.
    TOWARD CATEGORY-LEVEL OBJECT RECOGNITION, 2006, 4170 : 67 - +
  • [43] Robotic vision: 3D object recognition and pose determination
    Wong, AKC
    Rong, L
    Liang, X
    1998 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS - PROCEEDINGS, VOLS 1-3: INNOVATIONS IN THEORY, PRACTICE AND APPLICATIONS, 1998, : 1202 - 1209
  • [44] Benchmarking 3D pose estimation for face recognition
    Dou, Pengfei
    Wu, Yuhang
    Shah, Shishir K.
    Kakadiaris, Ioannis A.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 190 - 195
  • [45] Improving Gait Recognition with 3D Pose Estimation
    An, Weizhi
    Liao, Rijun
    Yu, Shiqi
    Huang, Yongzhen
    Yuen, Pong C.
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 137 - 147
  • [46] SO(3)-Pose: SO(3)-Equivariance Learning for 6D Object Pose Estimation
    Pan, Haoran
    Zhou, Jun
    Liu, Yuanpeng
    Lu, Xuequan
    Wang, Weiming
    Yan, Xuefeng
    Wei, Mingqiang
    COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 371 - 381
  • [47] Object recognition and pose estimation using appearance manifolds
    Zhong-Hua Hao
    Shi-Wei Ma
    Advances in Manufacturing, 2013, 1 : 258 - 264
  • [48] The MOPED framework: Object recognition and pose estimation for manipulation
    Collet, Alvaro
    Martinez, Manuel
    Srinivasa, Siddhartha S.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (10): : 1284 - 1306
  • [49] Clustered stochastic optimization for object recognition and pose estimation
    Gall, Juergen
    Rosenhahn, Bodo
    Seidel, Hans-Peter
    PATTERN RECOGNITION, PROCEEDINGS, 2007, 4713 : 32 - +
  • [50] Object recognition and pose estimation across illumination changes
    Muselet, D.
    Funt, B.
    Shi, L.
    Macaire, L.
    VISAPP 2007: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOLUME IU/MTSV, 2007, : 264 - +