Quasi-stationary simulation of the contact process

被引:29
|
作者
Dickman, R [1 ]
de Oliveira, MM [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, ICEx, BR-30123970 Belo Horizonte, MG, Brazil
关键词
Monte Carlo simulation; quasi-stationary state; Markov process; absorbing state; contact process;
D O I
10.1016/j.physa.2005.05.051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review a recently devised Monte Carlo simulation method for the direct study of quasi-stationary properties of stochastic processes with an absorbing state. The method is used to determine the static correlation function and the interparticle gap-length distribution in the critical one-dimensional contact process. We also find evidence for power-law decay of the interparticle distance distribution in the two-particle subspace. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 141
页数:8
相关论文
共 50 条
  • [11] SIMULATION FROM QUASI-STATIONARY DISTRIBUTIONS ON REDUCIBLE STATE SPACES
    Griffin, A.
    Jenkins, P. A.
    Roberts, G. O.
    Spencer, S. E. F.
    ADVANCES IN APPLIED PROBABILITY, 2017, 49 (03) : 960 - 980
  • [12] Minimal quasi-stationary distribution approximation for a birth and death process
    Villemonais, Denis
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 18
  • [13] A QUASI-STATIONARY FIELD OF THE THERMAL-RADIATION IN THE THEORY OF CONTACT RADIOTHERMOMETRY
    REZNIK, AN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1991, 34 (05): : 512 - &
  • [14] Quasi-stationary fluid theory of the hole-boring process
    Pei, Zhikun
    Shen, Baifei
    Shi, Yin
    Ji, Liangliang
    Wang, Wenpeng
    Zhang, Xiaomei
    Zhang, Lingang
    Xu, Tongjun
    Liu, Chen
    PHYSICS OF PLASMAS, 2016, 23 (04)
  • [15] Exponential convergence to quasi-stationary distribution and Q-process
    Champagnat, Nicolas
    Villemonais, Denis
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (1-2) : 243 - 283
  • [16] EXCITATION OF QUASI-STATIONARY STATES
    MALEV, AV
    RUDAKOV, VS
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1988, (02): : 84 - 86
  • [17] QUASI-STATIONARY SALT FINGERS
    POGREBNOY, AE
    IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA, 1992, 28 (09): : 988 - 997
  • [18] Quasi-stationary optical Gaussons
    Biswas, Anjan
    Milovic, Daniela
    Girgis, Laila
    OPTIK, 2013, 124 (17): : 2959 - 2962
  • [19] EVOLUTION OF A QUASI-STATIONARY STATE
    WINTER, RG
    PHYSICAL REVIEW, 1961, 123 (04): : 1503 - +
  • [20] QUASI-STATIONARY STREAMER PROPAGATION
    Bolotov, O.
    Kadolin, B.
    Mankovskyi, S.
    Ostroushko, V
    Pashchenko, I
    Taran, G.
    Zavada, L.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2015, (04): : 185 - 188