Stabilization of Alkylated Azacrown Ether by Fatty Acid at the Air-Water Interface

被引:3
|
作者
Zarbakhsh, Ali [1 ]
Campana, Mario [1 ]
Webster, John. R. P. [2 ]
Wojciechowski, Kamil [3 ]
机构
[1] Queen Mary Univ London, Sch Biol & Chem Sci, London E1 4NS, England
[2] Rutherford Appleton Lab, ISIS Neutron Facil, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England
[3] Warsaw Univ Technol, Fac Chem, PL-00664 Warsaw, Poland
关键词
LANGMUIR-BLODGETT-FILMS; NEUTRON REFLECTION; ADSORPTION; MONOLAYER;
D O I
10.1021/la103620b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The adsorbed amount of partially deuterated dihexadecyl-diaza-18-crown-6 ether (d-ACE16) in the presence of different chain length fatty acids as a function of surface pressure was determined by neutron reflectometry technique. The highest adsorbed amount of the azacrown ether was observed for the mixture of ACE 16 with hexadecanoic (palmitic) acid, pointing to the importance of chain length matching between the two species for optimum stabilization of the mixed monolayer. The contrast variation technique was used to estimate the contribution to the total adsorbed amount from stearic acid and ACE16. It was found that the mixed Langmuir monolayer is stable against dissolution up to a surface pressure of 20 mN m(-1). Above this pressure, however, the spread and adsorbed amounts start to deviate, indicative of partial dissolution into the aqueous subphase. The consequences of this behavior for the transport of metal ions through the interfaces of permeation liquid membranes (PLMs) are discussed.
引用
收藏
页码:18194 / 18198
页数:5
相关论文
共 50 条
  • [41] Molecular fluctuations at the air-water interface
    Eaves, Joel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [42] Ion partitioning at the air-water interface
    Eggimann, BL
    Siepmann, JI
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1389 - U1389
  • [43] Polymer Behavior at the Air-Water Interface
    Gargallo, Ligia
    MRS BULLETIN, 2010, 35 (08) : 615 - 622
  • [44] ADSORPTION OF DNA AT AIR-WATER INTERFACE
    FROMMER, MA
    MILLER, IR
    JOURNAL OF PHYSICAL CHEMISTRY, 1968, 72 (08): : 2862 - &
  • [45] Mass spectrometry at the air-water interface
    Zhang, Xinxing
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2021, 462
  • [46] Synthesis of Novel Zwitterionic Heterogemini Surfactants Derived from Fatty Acid and Investigation of Their Behavior at the Air-Water Interface
    Yu, Erlei
    Mamat, Xamxikamar
    Zhang, Yagang
    Eli, Wumanjiang
    LETTERS IN ORGANIC CHEMISTRY, 2015, 12 (08) : 591 - 597
  • [47] Ozonolysis of fatty acid monolayers at the air-water interface: organic films may persist at the surface of atmospheric aerosols
    Woden, Benjamin
    Skoda, Maximilian W. A.
    Milsom, Adam
    Gubb, Curtis
    Maestro, Armando
    Tellam, James
    Pfrang, Christian
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (02) : 1325 - 1340
  • [48] Enrichment of Amyloidogenesis at an Air-Water Interface
    Jean, Letitia
    Lee, Chiu Fan
    Vaux, David J.
    BIOPHYSICAL JOURNAL, 2012, 102 (05) : 1154 - 1162
  • [49] FIBRINOGEN MONOLAYERS AT THE AIR-WATER INTERFACE
    ELEY, DD
    GRANT, RA
    TAYLOR, KB
    BIOCHEMICAL JOURNAL, 1951, 49 (05) : R29 - R30
  • [50] Bacterial accumulation at the air-water interface
    Schafer, A
    Harms, H
    Zehnder, AJB
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (23) : 3704 - 3712