Bismides: 2D structures and quantum dots

被引:4
|
作者
Pacebutas, Vaidas [1 ]
Butkute, Renata [1 ]
Cechavicius, Bronislovas [1 ]
Stanionyte, Sandra [1 ]
Pozingyte, Evelina [1 ]
Skapas, Martynas [1 ]
Selskis, Algirdas [1 ]
Geizutis, Andrejus [1 ]
Krotkus, Arunas [1 ]
机构
[1] Ctr Phys Sci & Technol, Sauletekio Av 3, LT-10257 Vilnius, Lithuania
关键词
GaAsBi; GaInAsBi; quantum wells; quantum dots; photoluminescence; MBE; WELLS; PHOTOLUMINESCENCE; EPITAXY; BISMUTH;
D O I
10.1088/1361-6463/aa7bdb
中图分类号
O59 [应用物理学];
学科分类号
摘要
The growth and characterization of ternary GaAsBi and quaternary GaInAsBi compound quantum wells (QWs) on GaAs substrates is presented in this study. The influence of technological parameters, such as different growth modes, substrate temperatures, beam equivalent pressure ratios and thermal treating on structural and luminescent properties of QWs is discussed. The complex structural investigations using x-ray diffraction, atomic force microscopy and high-resolution transmission electron microscopy revealed high crystal structure, smooth surfaces and abrupt interfaces of both GaAsBi and GaInAsBi QWs. The temperature dependent photoluminescence measurements demonstrated emission wavelengths up to 1.43 mu m in room temperature PL spectra measured for GaAsBi/GaAs QWs containing 12% Bi, whereas GaInAsBi QWs with 4.2% of bismuth inserted between GaAs barriers has reached 1.25 mu m. Moreover, the annealing at high temperatures of GaAsBi/AlAs QWs stimulated agglomeration of bismuth to quantum dots in the well layers, emitting at 1.5 mu m. The achieved wavelengths are the longest ones declared for the GaAsBi and GaInAsBi QW structures grown on the GaAs substrate, therefore bismide-based QWs are the promising structures for applications in infrared devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] 2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications
    Liu, Xifeng
    Gaihre, Bipin
    George, Matthew N.
    Li, Yong
    Tilton, Maryam
    Yaszemski, Michael J.
    Lu, Lichun
    BIOMATERIALS SCIENCE, 2021, 9 (08) : 2768 - 2803
  • [32] Colloidal quantum dots lasing and coupling in 2D holographic photonic quasicrystals
    Hayat, Anwer
    Cui, Libin
    Liang, Han
    Zhang, Shuai
    Xu Zhiyang
    Khan, Muhammad Ali
    Aziz, Gohar
    Zhai, Tianrui
    OPTICS EXPRESS, 2021, 29 (10) : 15145 - 15158
  • [33] Designing artificial 2D crystals with site and size controlled quantum dots
    Xuejun Xie
    Jiahao Kang
    Wei Cao
    Jae Hwan Chu
    Yongji Gong
    Pulickel M. Ajayan
    Kaustav Banerjee
    Scientific Reports, 7
  • [34] Interface effects in the model of δ-potential for 2D semiconductor quantum structures
    Semenov, YG
    ACTA PHYSICA POLONICA A, 1998, 94 (03) : 526 - 530
  • [35] WEAK LOCALIZATION IN PATTERN 2D STRUCTURES WITH A SINGLE QUANTUM WELL
    Germanenko, A. V.
    Rut, O. E.
    Minkov, G. M.
    Sherstobitov, A. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (12-13): : 2955 - 2959
  • [36] Antilocalization in gated 2D quantum well structures with composition gradient
    Minkov, G. M.
    Germanenko, A. V.
    Rut, O. E.
    Sherstobitov, A. A.
    Zvonkov, B. N.
    International Journal of Nanoscience, Vol 2, No 6, 2003, 2 (06): : 543 - 549
  • [37] Geometrical Effects on the properties of 1D, 2D and 3D Quantum Dots Supercrystals
    Camacho, A.
    Nossa, J. F.
    PHYSICS OF SEMICONDUCTORS, 2009, 1199 : 335 - 336
  • [38] Hybrid monolithic IR arrays based on colloidal quantum dots and 2D materials
    Popov V.S.
    Ponomarenko V.P.
    Popov S.V.
    Applied Physics, 2023, (06): : 45 - 53
  • [39] Hopping conductivity and coulomb correlations in 2D arrays of Ge/Si quantum dots
    Yakimov, AI
    Dvurechenskii, AV
    Min'kov, GM
    Sherstobitov, AA
    Nikiforov, AI
    Bloshkin, AA
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2005, 100 (04) : 722 - 730
  • [40] Structural and Electrostatic Confinement of a Single Electron in a Scalable 2D Array of Quantum Dots
    Sadik, Amina
    Nowak, Etienne
    Hutin, Louis
    Mortemousque, Pierre-Andre
    Bertrand, Benoit
    2023 SILICON NANOELECTRONICS WORKSHOP, SNW, 2023, : 101 - 102