Optical-phonon-mediated photocurrent in terahertz quantum-well photodetectors

被引:17
|
作者
Gu, L. L. [1 ]
Guo, X. G. [1 ]
Fu, Z. L. [1 ]
Wan, W. J. [1 ]
Zhang, R. [1 ]
Tan, Z. Y. [1 ]
Cao, J. C. [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Key Lab Terahertz Solid State Technol, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
Incident light - Electromagnetic fields - Gallium arsenide - Photons - Quantum well infrared photodetectors - III-V semiconductors - Photodetectors - Semiconductor quantum wells - Phonons;
D O I
10.1063/1.4916084
中图分类号
O59 [应用物理学];
学科分类号
摘要
Strong and sharp photocurrent peak at longitudinal optical (LO) phonon frequency (8.87 THz) is found in GaAs/(Al, Ga) As terahertz quantum-well photodetectors (QWPs). Two mesa-structure terahertz QWPs with and without one-dimensional metal grating are fabricated to investigate the behavior of such photoresponse peak. The experimental and simulation results indicate that the photocurrent peak originates from a two-step process. First, at the LO phonon frequency, a large number of non-equilibrium LO phonons are excited by the incident electromagnetic field, and the electromagnetic energy is localized and enhanced in the thin multi-quantum-well layer. Second, through the Frohlich interaction, the localized electrons are excited to continuum states by absorbing the non-equilibrium LO phonons, which leads to the strong photoresponse peak. This finding is useful for exploring strong light-matter interaction and realizing high sensitive terahertz photodetectors. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
    谭智勇
    万文坚
    曹俊诚
    Chinese Physics B, 2020, 29 (08) : 76 - 88
  • [22] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors*
    Tan, Zhi-Yong
    Wan, Wen-Jian
    Cao, Jun-Cheng
    CHINESE PHYSICS B, 2020, 29 (08)
  • [23] Optical interference and nonlinearities in quantum-well infrared photodetectors
    Ershov, M
    Liu, HC
    Perera, AGU
    Matsik, SG
    PHYSICA E, 2000, 7 (1-2): : 115 - 119
  • [24] Numerical Study on Metal Cavity Couplers for Terahertz Quantum-Well Photodetectors
    Guo, Xuguang
    Zhang, Rong
    Cao, Juncheng
    Liu, Huichun
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2012, 48 (05) : 728 - 733
  • [25] Theoretical Investigation on Microcavity Coupler for Terahertz Quantum-Well Infrared Photodetectors
    Guo, Xuguang
    Ren, Yuxiang
    Zhang, Guixue
    Yu, Anqi
    Chen, Xiaoshuang
    Zhu, Yiming
    IEEE ACCESS, 2020, 8 : 176149 - 176157
  • [26] Quantum-well infrared photodetectors
    Levine, B.F.
    1600, American Inst of Physics, Woodbury, NY, United States (74):
  • [27] QUANTUM-WELL INFRARED PHOTODETECTORS
    LEVINE, BF
    JOURNAL OF APPLIED PHYSICS, 1993, 74 (08) : R1 - R81
  • [28] Terahertz quantum well photodetectors
    Liu, H. C.
    Luo, Hui
    Song, Chun-ying
    Wasilewski, Zbig R.
    SpringThorpe, A. J.
    Cao, J. C.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2008, 14 (02) : 374 - 377
  • [29] Terahertz quantum well photodetectors
    Luo, H.
    Liu, H. C.
    Song, C. Y.
    Wasilewski, Z. R.
    SpringThorpe, A. J.
    Cao, J. C.
    PHOTONICS FOR SPACE ENVIRONMENTS XI, 2006, 6308
  • [30] Temperature dependence of current-voltage characteristics of terahertz quantum-well photodetectors
    Tan, Z. Y.
    Guo, X. G.
    Cao, J. C.
    Li, H.
    Wang, X.
    Feng, S. L.
    Wasilewski, Z. R.
    Liu, H. C.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2009, 24 (11)