Steady state modelling of steam-gasification of biomass for H2-rich syngas production

被引:26
|
作者
Liu, Zhibin [1 ]
Zhao, Chuankai [2 ]
Cai, Longhao [3 ]
Long, Xinman [4 ]
机构
[1] Southwest Petr Univ, Sch Sci, Chengdu 610500, Sichuan, Peoples R China
[2] Southwest Petr Univ, Sch Petr Engn, Chengdu 610500, Sichuan, Peoples R China
[3] PetroChina, Drilling & Prod Technol Res Inst Liaohe Oilfield, Panjin 124000, Liaoning, Peoples R China
[4] PetroChina Xinjiang Oilfield Co, Res Inst Expt & Detect, Karamay 834000, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Gasification; Aspen plus; Free-tar syngas; Simulation; BUBBLING FLUIDIZED-BED; CHEMICAL LOOPING GASIFICATION; RICH GAS-PRODUCTION; GASIFYING AGENTS; ASPEN PLUS; PERFORMANCE; AIR; OLIVINE; TAR; TEMPERATURE;
D O I
10.1016/j.energy.2021.121616
中图分类号
O414.1 [热力学];
学科分类号
摘要
Due to its abundance, biomass is widely used in many engineering applications such as gasification process. Using biomass as a raw material for H-2-rich syngas production can not only reduce greenhouse gas emissions but also promote renewable energy utilization. In this study, a multi-stage model for H-2 rich syngas production from biomass gasification was developed and studied using Aspen Plus simulator. The model is divided into four sub-models including drying sub-model, devolatilization sub-model, tar cracking sub model and gasification sub model. Performance of biomass gasifier was evaluated by predicting the gas yield, lower heating value of produced syngas, carbon conversion efficiency and cold gas efficiency. The maximum H-2 content of 14.9 vol% was achived when S/B and reaction temperature were 1.0 and 1123 K, respectively. The highest CCE of 67.8 % and CGE of 37.9 % were also achieved at 1123 K. An increase in S/B from 0 to 0.5 led to a lower tar yield, which was from 133.557 g/Nm(3) to 127.193 g/Nm(3), and then leveled off as loading increased further from 0.5 to 1.0. The results also showed that during high S/B conditions, the gas-phase chemistry is dominated by water-gas shift (WGS) and Boudouard reactions. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas
    Li, Chunshan
    Hirabayashi, Daisuke
    Suzuki, Kenzi
    FUEL PROCESSING TECHNOLOGY, 2009, 90 (06) : 790 - 796
  • [22] H2-rich syngas production from air gasification of date palm waste: an experimental and modeling investigation
    Kabli, Mohammad R.
    Ali, Arshid M.
    Inayat, Muddasser
    Zahrani, Abdulrahim A.
    Shahzad, Khurram
    Shahbaz, Muhammad
    Sulaiman, Shaharin A.
    BIOMASS CONVERSION AND BIOREFINERY, 2022,
  • [23] Steam reforming of toluene as model biomass tar to H2-rich syngas in a DBD plasma-catalytic system
    Liu, Lina
    Wang, Qiang
    Ahmad, Shakeel
    Yang, Xiaoyi
    Ji, Mengru
    Sun, Yifei
    JOURNAL OF THE ENERGY INSTITUTE, 2018, 91 (06) : 927 - 939
  • [24] Microwave-assisted pyrolysis of biomass for efficient H2-rich syngas production promoted by calcium oxide
    Zeng, Chen
    Jiang, Zhiwei
    Zeng, Yongjian
    Zhang, Suyu
    Luque, Rafael
    Yan, Kai
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [25] Gasification integrated with steam co-reforming of agricultural waste biomass over its derived CO2/O2/steam-mediated porous biochar for boosting H2-rich syngas production
    Zhang, Xuesong
    Kong, Ge
    Zhang, Xin
    Wang, Kejie
    Liu, Quan
    Shi, Suan
    Han, Lujia
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [26] Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening
    Li, Jie
    Pan, Lanjia
    Suvarna, Manu
    Wang, Xiaonan
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [27] H2-rich gas production from co-gasification of biomass/plastics blends: A modeling approach
    Cao, Yan
    Bai, Yu
    Du, Jiang
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 112
  • [28] H2-enriched gaseous fuel production via steam-gasification of biomass by using lime-based sorbents
    Cao, Yan
    Bai, Yu
    Du, Jiang
    BIOFUELS-UK, 2024, 15 (10): : 1233 - 1241
  • [29] Investigation of Biomass Gasification Potential in Syngas Production: Characteristics of Dried Biomass Gasification Using Steam as the Gasification Agent
    Hu, Yisheng
    Cheng, Qiurong
    Wang, Yi
    Guo, Ping
    Wang, Zhouhua
    Liu, Huang
    Akbari, Ali
    ENERGY & FUELS, 2020, 34 (01) : 1033 - 1040
  • [30] Oxygen blown steam gasification of different kinds of lignocellulosic biomass for the production of hydrogen-rich syngas
    Mu, Qingnan
    Aleem, Rao Danish
    Liu, Chang
    Elendu, Collins Chimezie
    Cao, Changqing
    Duan, Pei-Gao
    RENEWABLE ENERGY, 2024, 232