MaxDIA enables library-based and library-free data-independent acquisition proteomics

被引:131
|
作者
Sinitcyn, Pavel [1 ]
Hamzeiy, Hamid [1 ]
Soto, Favio Salinas [1 ]
Itzhak, Daniel [2 ]
McCarthy, Frank [2 ]
Wichmann, Christoph [1 ]
Steger, Martin [3 ]
Ohmayer, Uli [3 ]
Distler, Ute [4 ]
Kaspar-Schoenefeld, Stephanie [5 ]
Prianichnikov, Nikita [1 ]
Yilmaz, Sule [1 ]
Rudolph, Jan Daniel [1 ,6 ]
Tenzer, Stefan [4 ]
Perez-Riverol, Yasset [7 ]
Nagaraj, Nagarjuna [5 ]
Humphrey, Sean J. [8 ]
Cox, Jurgen [1 ,9 ]
机构
[1] Max Planck Inst Biochem, Computat Syst Biochem Res Grp, Martinsried, Germany
[2] Chan Zuckerberg Biohub, San Francisco, CA USA
[3] Evotec Munchen GmbH, Martinsried, Germany
[4] Johannes Gutenberg Univ Mainz, Inst Immunol, Mainz, Germany
[5] Bruker Daltonik GmbH, Bremen, Germany
[6] Bosch Ctr Artificial Intelligence, Renningen, Germany
[7] European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Wellcome Trust Genome Campus, Cambridge, England
[8] Univ Sydney, Sch Life & Environm Sci, Charles Perkins Ctr, Camperdown, NSW, Australia
[9] Univ Bergen, Dept Biol & Med Psychol, Bergen, Norway
基金
英国生物技术与生命科学研究理事会;
关键词
LABEL-FREE QUANTIFICATION; PEPTIDE IDENTIFICATION; EXTRACTION; SOFTWARE; RATES;
D O I
10.1038/s41587-021-00968-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
MaxDIA is a software platform for analyzing data-independent acquisition (DIA) proteomics data within the MaxQuant software environment. Using spectral libraries, MaxDIA achieves deep proteome coverage with substantially better coefficients of variation in protein quantification than other software. MaxDIA is equipped with accurate false discovery rate (FDR) estimates on both library-to-DIA match and protein levels, including when using whole-proteome predicted spectral libraries. This is the foundation of discovery DIA-hypothesis-free analysis of DIA samples without library and with reliable FDR control. MaxDIA performs three- or four-dimensional feature detection of fragment data, and scoring of matches is augmented by machine learning on the features of an identification. MaxDIA's bootstrap DIA workflow performs multiple rounds of matching with increasing quality of recalibration and stringency of matching to the library. Combining MaxDIA with two new technologies-BoxCar acquisition and trapped ion mobility spectrometry-both lead to deep and accurate proteome quantification.
引用
收藏
页码:1563 / +
页数:14
相关论文
共 50 条
  • [41] Interrogating data-independent acquisition LC–MS/MS for affinity proteomics
    David L. Tabb
    Mohammed Hanzala Kaniyar
    Omar G. Rosas Bringas
    Heaji Shin
    Luciano Di Stefano
    Martin S. Taylor
    Shaoshuai Xie
    Omer H. Yilmaz
    John LaCava
    Journal of Proteins and Proteomics, 2024, 15 (3) : 281 - 298
  • [42] Application of data mining in library-based personalized learning
    Luo L.
    Luo, Lin (ddtsg@qq.com), 1600, Kassel University Press GmbH (12): : 127 - 133
  • [43] Data-Independent Acquisition and Label-Free Quantification for Quantitative Proteomics Analysis of Human Cerebrospinal Fluid
    Makepeace, Karl A. T.
    Rookyard, Alexander W.
    Das, Lipi
    Vardarajan, Badri N.
    Chakrabarty, Jayanta K.
    Jain, Anu
    Kang, Min Suk
    Werth, Emily G.
    Reyes-Dumeyer, Dolly
    Zerlin-Esteves, Marielba
    Honig, Lawrence S.
    Mayeux, Richard
    Brown, Lewis M.
    CURRENT PROTOCOLS, 2024, 4 (03):
  • [44] Data-Independent Acquisition Approach to Proteome: A Case Study and a Spectral Library for Mass Spectrometry-Based Investigation of Mycobacterium tuberculosis
    Awasthi, Kriti
    Kootimole, Chinmaya Narayana
    Aravind, Anjana
    Prasad, Thottethodi Subrahmanya Keshava
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2022, 26 (03) : 142 - 150
  • [45] Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020
    Zhang, Fangfei
    Ge, Weigang
    Ruan, Guan
    Cai, Xue
    Guo, Tiannan
    PROTEOMICS, 2020, 20 (17-18)
  • [46] Comparison of Pairwise Venous and Fingertip Plasma Using Quantitative Proteomics Based on Data-Independent Acquisition
    Xu, Ganfei
    Lv, Jiacheng
    Huang, Mingjing
    Zhu, Lingli
    Tan, Subei
    Ding, Chen
    JOURNAL OF PROTEOME RESEARCH, 2023, 22 (04) : 1347 - 1358
  • [47] Spectral Library-Based Single-Cell Proteomics Resolves Cellular Heterogeneity
    Senavirathna, Lakmini
    Ma, Cheng
    Chen, Ru
    Pan, Sheng
    CELLS, 2022, 11 (15)
  • [48] Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics
    Distler, Ute
    Kuharev, Joerg
    Tenzer, Stefan
    EXPERT REVIEW OF PROTEOMICS, 2014, 11 (06) : 675 - 684
  • [49] A study on the plasma proteomics of different types of depressive disorders based on label-free data-independent acquisition proteomic technology
    Han, Panpan
    Min, Liping
    Zhu, Yazhou
    Li, Zihua
    Liu, Zhuhua
    JOURNAL OF AFFECTIVE DISORDERS, 2025, 371 : 91 - 103
  • [50] DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics
    Tsou, Chih-Chiang
    Avtonomov, Dmitry
    Larsen, Brett
    Tucholska, Monika
    Choi, Hyungwon
    Gingras, Anne-Claude
    Nesvizhskii, Alexey I.
    NATURE METHODS, 2015, 12 (03) : 258 - +