Taylor approximation of invariant fiber bundles for nonautonomous difference equations

被引:16
|
作者
Pötzsche, C
Rasmussen, M
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Augsburg, Dept Math, D-86135 Augsburg, Germany
关键词
Taylor approximation; invariant manifold; nonautonomous difference equation; reduction principle;
D O I
10.1016/j.na.2004.10.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Invariant fiber bundles generalize invariant manifolds to nonautonomous difference equations. In this paper we develop a method to calculate their Taylor approximation, which is of crucial importance, e.g. for an application of the reduction principle in a nonautonomous setting. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1303 / 1330
页数:28
相关论文
共 50 条
  • [41] The Stability of Nonautonomous Retarded Difference-Differential Equations
    王联
    赵怀中
    Acta Mathematica Sinica,English Series, 1992, (04) : 349 - 356
  • [42] Spatial discretization of pullback attractors of nonautonomous difference equations
    Kloeden, P
    COMMUNICATIONS IN DIFFERENCE EQUATIONS, 2000, : 215 - 226
  • [43] Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy
    Davor Dragičević
    Weinian Zhang
    Wenmeng Zhang
    Mathematische Zeitschrift, 2019, 292 : 1175 - 1193
  • [44] Nonautonomous difference equations and a Perron-type theorem
    Barreira, Luis
    Valls, Claudia
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (03): : 277 - 290
  • [45] Positive evolution families solving nonautonomous difference equations
    Bayazit, Fatih
    POSITIVITY, 2012, 16 (04) : 653 - 684
  • [46] On a Class of Nonautonomous Max-Type Difference Equations
    Liu, Wanping
    Yang, Xiaofan
    Stevic, Stevo
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [47] Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy
    Dragicevic, Davor
    Zhang, Weinian
    Zhang, Wenmeng
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (3-4) : 1175 - 1193
  • [48] A Perron-type theorem for nonautonomous difference equations
    Barreira, Luis
    Valls, Claudia
    NONLINEARITY, 2013, 26 (03) : 855 - 870
  • [49] PERIODIC-SOLUTIONS TO NONAUTONOMOUS DIFFERENCE-EQUATIONS
    CLARK, ME
    GROSS, LJ
    MATHEMATICAL BIOSCIENCES, 1990, 102 (01) : 105 - 119
  • [50] Positive evolution families solving nonautonomous difference equations
    Fatih Bayazit
    Positivity, 2012, 16 : 653 - 684