Radar-based blood pressure estimation using multiple features

被引:0
|
作者
Shi, Haotian [1 ]
Pan, Jiasheng [1 ]
Zheng, Zhi [1 ,2 ]
Wang, Bo [1 ,2 ]
Shen, Cheng [1 ]
Guo, Yongxin [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[2] Natl Univ Singapore Suzhou, Res Inst, Suzhou, Peoples R China
关键词
single radar; non-contact blood pressure measurement; correlation analysis; feature parameters of arterial pulse wave;
D O I
10.1109/IMBIOC52515.2022.9790124
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This paper presents a non-contact blood pressure measurement model based on the random forest algorithm and arterial pulse waveform detected by radar. After the radar signal is pre-processed with filtering and smoothing methods, feature parameters of arterial pulse waves are automatically extracted, and correlation analysis is conducted to further explore the relationship between feature parameters and blood pressure. Then, a blood pressure regression model based on the random forest is established. Compared with the reference blood pressure obtained by a sphygmomanometer, the DBP error of this model is 0.22 +/- 3.85 mmHg(Mean Difference +/- Standard Deviation), and the SBP error is 2.52 +/- 6.73mmHg(Mean Difference +/- Standard Deviation), which proves this method can effectively measure blood pressure by using a single radar in a non-contact state.
引用
收藏
页码:183 / 185
页数:3
相关论文
共 50 条
  • [41] An Approach to Detect Chronic Obstructive Pulmonary Disease Using UWB Radar-Based Temporal and Spectral Features
    Siddiqui, Hafeez-Ur-Rehman
    Raza, Ali
    Saleem, Adil Ali
    Rustam, Furqan
    Diez, Isabel de la Torre
    Aray, Daniel Gavilanes
    Lipari, Vivian
    Ashraf, Imran
    Dudley, Sandra
    DIAGNOSTICS, 2023, 13 (06)
  • [42] An MHT algorithm for UWB radar-based multiple human target tracking
    Chang, SangHyun
    Wolf, Michael
    Burdick, Joel W.
    2009 IEEE INTERNATIONAL CONFERENCE ON ULTRA-WIDEBAND (ICUWB 2009), 2009, : 459 - 463
  • [43] Radar-Based Radial Arterial Pulse Rate and Pulse Pressure Analysis
    Rong, Yu
    Mishra, Kumar Vijay
    Bliss, Daniel W.
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1870 - 1874
  • [44] Radar-Based Health Monitoring
    Schreurs, Dominique
    Mercuri, Marco
    Soh, Ping Jack
    Vandenbosch, Guy
    2013 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON RF AND WIRELESS TECHNOLOGIES FOR BIOMEDICAL AND HEALTHCARE APPLICATIONS (IMWS-BIO), 2013, : 154 - 156
  • [45] Radar-based hail detection
    Skripnikova, Katerina
    Rezacova, Daniela
    ATMOSPHERIC RESEARCH, 2014, 144 : 175 - 185
  • [46] GMM-HMM-Based Blood Pressure Estimation Using Time-Domain Features
    Celler, Branko G.
    Phu Ngoc Le
    Argha, Ahmadreza
    Ambikairajah, Eliathamby
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (06) : 3631 - 3641
  • [47] Identification, Activity, and Biometric Classification using Radar-based Sensing
    Le Nguyen
    Casado, Constantino Alvarez
    Silven, Olli
    Lopez, Miguel Bordallo
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [48] Plethysmographic Waveform Features and Hemodynamic Features for Camera-Based Blood Pressure Estimation
    Liao, Guanghang
    Lu, Hongzhou
    Shan, Caifeng
    Wang, Wenjin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [49] Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor
    Mercuri, Marco
    Lorato, Ilde Rosa
    Liu, Yao-Hong
    Wieringa, Fokko
    Van Hoof, Chris
    Torfs, Tom
    NATURE ELECTRONICS, 2019, 2 (06) : 252 - +
  • [50] Blood Pressure Estimation Using Photoplethysmogram Signal and Its Morphological Features
    Hasanzadeh, Navid
    Ahmadi, Mohammad Mahdi
    Mohammadzade, Hoda
    IEEE SENSORS JOURNAL, 2020, 20 (08) : 4300 - 4310