Radar-based blood pressure estimation using multiple features

被引:0
|
作者
Shi, Haotian [1 ]
Pan, Jiasheng [1 ]
Zheng, Zhi [1 ,2 ]
Wang, Bo [1 ,2 ]
Shen, Cheng [1 ]
Guo, Yongxin [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[2] Natl Univ Singapore Suzhou, Res Inst, Suzhou, Peoples R China
关键词
single radar; non-contact blood pressure measurement; correlation analysis; feature parameters of arterial pulse wave;
D O I
10.1109/IMBIOC52515.2022.9790124
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This paper presents a non-contact blood pressure measurement model based on the random forest algorithm and arterial pulse waveform detected by radar. After the radar signal is pre-processed with filtering and smoothing methods, feature parameters of arterial pulse waves are automatically extracted, and correlation analysis is conducted to further explore the relationship between feature parameters and blood pressure. Then, a blood pressure regression model based on the random forest is established. Compared with the reference blood pressure obtained by a sphygmomanometer, the DBP error of this model is 0.22 +/- 3.85 mmHg(Mean Difference +/- Standard Deviation), and the SBP error is 2.52 +/- 6.73mmHg(Mean Difference +/- Standard Deviation), which proves this method can effectively measure blood pressure by using a single radar in a non-contact state.
引用
收藏
页码:183 / 185
页数:3
相关论文
共 50 条
  • [1] Experimental investigation into radar-based central blood pressure estimation
    Solberg, Lars Erik
    Aardal, Oyvind
    Berger, Tor
    Balasingham, Ilangko
    Fosse, Erik
    Hamran, Svein-Erik
    IET RADAR SONAR AND NAVIGATION, 2015, 9 (02): : 145 - 153
  • [2] Radar-Based Contactless Blood Pressure Estimation System Using Signal Decomposition and Deep Neural Network
    Wang, Yong
    Wang, Sibo
    Fang, Chao
    Zhou, Mu
    Yang, Xiaolong
    Zhang, Qian
    Pang, Yu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [3] Radar-Based Estimation of Human Body Orientation Using Respiratory Features and Hierarchical Regression Model
    Sun, Wenxu
    Iwata, Shunsuke
    Tanaka, Yuji
    Sakamoto, Takuya
    IEEE SENSORS LETTERS, 2023, 7 (09)
  • [4] RADAR-BASED FOREST BIOMASS ESTIMATION
    RAUSTE, Y
    HAME, T
    PULLIAINEN, J
    HEISKA, K
    HALLIKAINEN, M
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (14) : 2797 - 2808
  • [5] TRCCBP: Transformer Network for Radar-Based Contactless Continuous Blood Pressure Monitoring
    Jiang, Xikang
    Zhang, Jinhui
    Mu, Wenyao
    Wang, Kun
    Li, Lei
    Zhang, Lin
    SENSORS, 2023, 23 (24)
  • [6] Signal Quality Indices Evaluation for Optimized Radar-Based Blood Pressure Monitoring
    Shi, Haotian
    Zheng, Zhi
    Wang, Bo
    Fan, Yuhan
    Guo, Yongxin
    2023 ASIA-PACIFIC MICROWAVE CONFERENCE, APMC, 2023, : 209 - 211
  • [7] A MIMO Radar-Based DOA Estimation Structure Using Compressive Measurements
    Chen, Tao
    Yang, Jian
    Guo, Muran
    SENSORS, 2019, 19 (21)
  • [8] Optimizing Radar-Based Rainfall Estimation Using Machine Learning Models
    Hassan, Diar
    Isaac, George A.
    Taylor, Peter A.
    Michelson, Daniel
    REMOTE SENSING, 2022, 14 (20)
  • [9] Radar-Based Altitude over Ground Estimation of UAVs
    Schartel, Markus
    Burr, Ralf
    Schoeder, Pirmin
    Rossi, Gilberto
    Huegler, Philipp
    Mayer, Winfried
    Waldschmidt, Christian
    2018 11TH GERMAN MICROWAVE CONFERENCE (GEMIC 2018), 2018, : 103 - 106
  • [10] Spatiotemporal Modeling and Implementation for Radar-Based Rainfall Estimation
    Kuang, Qiuming
    Yang, Xuebing
    Zhang, Wensheng
    Zhang, Guoping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (11) : 1601 - 1605