Tuning Zr12O22 Node Defects as Catalytic Sites in the Metal-Organic Framework hcp UiO-66

被引:100
|
作者
Chen, Xi [1 ]
Lyu, Yinghui [1 ]
Wang, Zhengyan [1 ]
Qiao, Xu [1 ]
Gates, Bruce C. [2 ]
Yang, Dong [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, Nanjing 21000, Jiangsu, Peoples R China
[2] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA
来源
ACS CATALYSIS | 2020年 / 10卷 / 05期
关键词
Zr-12; nodes; defects; mu(2)-OH groups; metal-organic frameworks; epoxide ring-opening; alcohols; LINKER; HYDROLYSIS; CLUSTER; OXIDE;
D O I
10.1021/acscatal.9b04905
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Defects in metal-organic frameworks (MOFs) play important roles in MOF reactivity and catalysis. Now, we report evidence of the reactivity and the quantitative characterization of the missing linker defects on the Zr12O22 nodes in the MOF hcp UiO-66 (these are paired Zr6O8 nodes bridged by OH groups) and those on the Zr6O8 nodes of the MOF UiO-66. The defect sites catalyze the ring-opening reactions of epoxides with alcohols, and new sites formed by removal of bridging OH groups on the Zr12O22 nodes also participate in the catalysis. The hcp UiO-66 was synthesized from UiO-66 and from molecular precursors, and, under various synthesis conditions, the nodes incorporated acetate ligands, where linkers were missing, and the number of these ligands was controlled by the synthesis conditions. These ligands are inhibitors of the catalytic reactions, and their removal by reaction with, for example, methanol (to form, for example, methyl acetate) preceded catalysis on the defect sites. The former MOF incorporated more defect sites than the latter, correspondingly being a more active catalyst. The defect sites on the Zr12O22 nodes are 2-6 times more active per site than those on the isolated Zr6O8 nodes, with the node-bridging OH groups increasing the catalytic activity of the neighboring node defect sites because new sites are formed by their removal. The results help point the way to the design and control of catalytic sites on metal oxide-like MOF nodes by tuning of the number and reactivity of the defect sites.
引用
收藏
页码:2906 / 2914
页数:17
相关论文
共 50 条
  • [21] Using water adsorption measurements to access the chemistry of defects in the metal-organic framework UiO-66
    Dissegna, Stefano
    Hardian, Rifan
    Epp, Konstantin
    Kieslich, Gregor
    Coulet, Marie-Vanessa
    Llewellyn, Philip
    Fischer, Roland A.
    CRYSTENGCOMM, 2017, 19 (29): : 4137 - 4141
  • [22] Tuning the Properties of Zr6O8 Nodes in the Metal Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers
    Wei, Ruiping
    Gaggioli, Carlo Alberto
    Li, Guozhu
    Islamoglu, Timur
    Zhang, Zhuxiu
    Yu, Ping
    Farha, Omar K.
    Cramer, Christopher J.
    Gagliardi, Laura
    Yang, Dong
    Gates, Bruce C.
    CHEMISTRY OF MATERIALS, 2019, 31 (05) : 1655 - 1663
  • [23] Iridium pair sites anchored to Zr6O8 nodes of the metal-organic framework UiO-66 catalyze ethylene hydrogenation
    Babucci, Melike
    Conley, Edward T.
    Hoffman, Adam S.
    Bare, Simon R.
    Gates, Bruce C.
    JOURNAL OF CATALYSIS, 2022, 411 : 177 - 186
  • [24] Synthesis and hydrogen storage studies of metal-organic framework UiO-66
    Zhao, Qiang
    Yuan, Wen
    Liang, Jianming
    Li, Jinping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (29) : 13104 - 13109
  • [25] Computational study of Bronsted acidity in the metal-organic framework UiO-66
    Chen, Haoyuan
    CHEMICAL PHYSICS LETTERS, 2022, 800
  • [26] Memristive behavior of UiO-66 metal-organic framework single crystal
    Bachinin, Semyon V.
    Lubimova, Anastasia
    Povarov, Svyatoslav A.
    Zubok, Dmitrii
    Okoneshnikova, Elizaveta
    Kulakova, Alena N.
    Rzhevskiy, Sergey S.
    Milichko, Valentin A.
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2024, 58
  • [27] On the intrinsic dynamic nature of the rigid UiO-66 metal-organic framework
    Hajek, Julianna
    Caratelli, Chiara
    Demuynck, Ruben
    De Wispelaere, Kristof
    Vanduyfhuys, Louis
    Waroquier, Michel
    Van Speybroeck, Veronique
    CHEMICAL SCIENCE, 2018, 9 (10) : 2723 - 2732
  • [28] An efficient modulated synthesis of zirconium metal-organic framework UiO-66
    Chen, Xia
    Li, Yongjie
    Fu, Qiang
    Qin, Hongyun
    Lv, Junnan
    Yang, Kun
    Zhang, Qicheng
    Zhang, Hui
    Wang, Ming
    RSC ADVANCES, 2022, 12 (10) : 6083 - 6092
  • [29] Electroactive Ferrocene at or near the Surface of Metal-Organic Framework UiO-66
    Palmer, Rebecca H.
    Liu, Jian
    Kung, Chung-Wei
    Hod, Idan
    Farha, Omar K.
    Hupp, Joseph T.
    LANGMUIR, 2018, 34 (16) : 4707 - 4714
  • [30] Free Energy of Ligand Removal in the Metal-Organic Framework UiO-66
    Bristow, Jessica K.
    Svane, Katrine L.
    Tiana, Davide
    Skelton, Jonathan M.
    Gale, Julian D.
    Walsh, Aron
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (17): : 9276 - 9281