Three-Attention Mechanisms for One-Stage 3-D Object Detection Based on LiDAR and Camera

被引:27
|
作者
Wen, Li-Hua [1 ]
Jo, Kang-Hyun [1 ]
机构
[1] Univ Ulsan, Grad Sch Elect Engn, Ulsan 44610, South Korea
关键词
Camera; LiDAR; one-stage; three attention mechanisms; 3-D object detection;
D O I
10.1109/TII.2020.3048719
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies one-stage 3-D object detection based on light detection and ranging (LiDAR) point clouds and red-green-blue (RGB) images that aims to boost 3-D object detection accuracy based on three attention mechanisms. Currently, most of the previous works converted LiDAR point clouds into bird's-eye-view (BEV) images, achieving a significant performance. However, they still have a problem due to partial height information (z-axis value) loss during the conversion. To eliminate this problem, the height information of the LiDAR point clouds is projected onto an RGB image and embedded into the original RGB image to generate a new image, named RGBD. This is the first attention mechanism to improve 3-D detection accuracy. Moreover, two other attention mechanisms extract more discriminative global and local features, respectively. Specifically, the global attention network is appended to a feature encoder, and the local attention network is used for the view-specific region of interest fusion. Massive experiments evaluated on the KITTI benchmark suite show that the proposed approach outperforms state-of-the-art LiDAR-Camera-based methods on the car class (easy, moderate, hard): 2-D (90.35%, 88.47%, 86.98%), 3-D (85.12%, 76.23%, 74.46%), and BEV (89.64%, 86.23%, 85.60%).
引用
收藏
页码:6655 / 6663
页数:9
相关论文
共 50 条
  • [21] One-Stage Deep Channels Attention Network for Remote Sensing Images Object Detection
    Tang, Jinyun
    Zhang, Wenzhen
    Zhang, Guixian
    Liang, Rongjiao
    Lu, Guangquan
    WEB AND BIG DATA, PT II, APWEB-WAIM 2022, 2023, 13422 : 483 - 491
  • [22] 3D Object Detection with LiDAR Based on Multi-Attention Mechanism
    Cao, Jie
    Peng, Yiqiang
    Fan, Likang
    Mo, Lingfan
    Wang, Longfei
    LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (04)
  • [23] One-Stage Anchor-Free 3D Vehicle Detection from LiDAR Sensors
    Li, Hao
    Zhao, Sanyuan
    Zhao, Wenjun
    Zhang, Libin
    Shen, Jianbing
    SENSORS, 2021, 21 (08)
  • [24] EYOLOX: An Efficient One-Stage Object Detection Network Based on YOLOX
    Tang, Rui
    Sun, Hui
    Liu, Di
    Xu, Hui
    Qi, Miao
    Kong, Jun
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [25] Filter Fusion: Camera-LiDAR Filter Fusion for 3-D Object Detection With a Robust Fused Head
    Xu, Yaming
    Li, Boliang
    Wang, Yan
    Cui, Yihan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [26] Rethinking the Late Fusion of LiDAR-Camera Based 3D Object Detection
    Yu, Lehang
    Zhang, Jing
    Liu, Zhong
    Yue, Haosong
    Chen, Weihai
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [27] Research and application of indoor 3D object detection based on Lidar and Monocular camera
    Jiang, Yi
    Sun, Bingyu
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1119 - 1123
  • [28] Enabling 3-D Object Detection With a Low-Resolution LiDAR
    Bai, Lin
    Zhao, Yiming
    Huang, Xinming
    IEEE EMBEDDED SYSTEMS LETTERS, 2022, 14 (04) : 163 - 166
  • [29] A LiDAR-Camera Fusion 3D Object Detection Algorithm
    Liu, Leyuan
    He, Jian
    Ren, Keyan
    Xiao, Zhonghua
    Hou, Yibin
    INFORMATION, 2022, 13 (04)
  • [30] Density Awareness and Neighborhood Attention for LiDAR-Based 3D Object Detection
    Qian, Hanxiang
    Wu, Peng
    Sun, Xiaoyong
    Guo, Xiaojun
    Su, Shaojing
    PHOTONICS, 2022, 9 (11)