Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate

被引:181
|
作者
Xu, Tianxiang [1 ,2 ,3 ]
Switkowski, Krzysztof [4 ,5 ]
Chen, Xin [1 ]
Liu, Shan [1 ]
Koynov, Kaloian [6 ]
Yu, Haohai [2 ,3 ]
Zhang, Huaijin [2 ,3 ]
Wang, Jiyang [2 ,3 ]
Sheng, Yan [1 ]
Krolikowski, Wieslaw [1 ,5 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Laser Phys Ctr, Canberra, ACT, Australia
[2] Shandong Univ, State Key Lab Crystal Mat, Jinan, Shandong, Peoples R China
[3] Shandong Univ, Inst Crystal Mat, Jinan, Shandong, Peoples R China
[4] Warsaw Univ Technol, Fac Phys, Warsaw, Poland
[5] Texas A&M Univ Qatar, Sci Program, Doha, Qatar
[6] Max Planck Inst Polymer Res, Mainz, Germany
基金
澳大利亚研究理事会;
关键词
LITHIUM-NIOBATE CRYSTALS; 2ND-HARMONIC GENERATION; LIGHT; BEAMS;
D O I
10.1038/s41566-018-0225-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The performance of many optical devices based on frequency conversion critically depends on spatial modulation of the nonlinear optical response of materials. This modulation ensures efficient energy exchange between optical waves at different frequencies via quasi-phase matching(1). In general, quasi-phase-matching structures, also known as nonlinear photonic crystals(2-4), offer a variety of properties and functionalities that cannot be obtained in uniform nonlinear crystals(5-9). So far, nonlinear photonic crystals have been restricted to one- or two-dimensional geometries owing to a lack of fabrication technologies capable of three-dimensional (3D) nonlinearity engineering. Here, we provide an experimental example of a 3D nonlinear photonic crystal, fabricated in ferroelectric barium calcium titanate, by applying an ultrafast light domain inversion approach. The resulting full flexibility of 3D nonlinearity modulation enables phase matching of nonlinear processes along an arbitrary direction, thereby removing constraints imposed by low-dimensional structures.
引用
收藏
页码:590 / +
页数:6
相关论文
共 50 条
  • [31] Photoluminescence of ZnO infiltrated into a three-dimensional photonic crystal
    A. N. Gruzintsev
    G. A. Emelchenko
    V. M. Masalov
    Semiconductors, 2009, 43 : 1017 - 1022
  • [32] A three-dimensional photonic crystal operating in the visible region
    Park, SH
    Gates, B
    Xia, YN
    ADVANCED MATERIALS, 1999, 11 (06) : 462 - +
  • [33] A three-dimensional photonic crystal operating at infrared wavelengths
    Lin, SY
    Fleming, JG
    Hetherington, DL
    Smith, BK
    Biswas, R
    Ho, KM
    Sigalas, MM
    Zubrzycki, W
    Kurtz, SR
    Bur, J
    NATURE, 1998, 394 (6690) : 251 - 253
  • [34] Crystal optics of three-dimensional photonic crystals with interfaces
    A. G. Bazhenova
    A. Yu. Men’shikova
    A. V. Sel’kin
    V. G. Fedotov
    N. N. Shevchenko
    A. V. Yakimanskii
    High Energy Chemistry, 2008, 42 : 527 - 528
  • [35] Three-dimensional photonic crystal operating in the visible region
    Department of Chemistry, University of Washington, Seattle, WA 98195-1700, United States
    Adv Mater, 6 (462-466):
  • [36] Impedance and modulus analysis of barium calcium titanate ferroelectric ceramics
    Satyanarayan Patel
    Lalitha Kodumudi Venkataraman
    Harekrishna Yadav
    Journal of the Korean Ceramic Society, 2021, 58 : 337 - 350
  • [38] A three-dimensional photonic crystal operating at infrared wavelengths
    S. Y. Lin
    J. G. Fleming
    D. L. Hetherington
    B. K. Smith
    R. Biswas
    K. M. Ho
    M. M. Sigalas
    W. Zubrzycki
    S. R. Kurtz
    Jim Bur
    Nature, 1998, 394 : 251 - 253
  • [39] Rainbow trapping in a chirped three-dimensional photonic crystal
    Hayran, Zeki
    Kurt, Hamza
    Staliunas, Kestutis
    SCIENTIFIC REPORTS, 2017, 7
  • [40] A novel woodpile three-dimensional terahertz photonic crystal
    Liu Huan
    Yao Jian-Quan
    Zheng Fang-Hua
    Xu De-Gang
    Wang Peng
    CHINESE PHYSICS LETTERS, 2007, 24 (05) : 1290 - 1293