A Modified Group Teaching Optimization Algorithm for Solving Constrained Engineering Optimization Problems

被引:22
|
作者
Rao, Honghua [1 ]
Jia, Heming [1 ]
Wu, Di [2 ]
Wen, Changsheng [1 ]
Li, Shanglong [1 ]
Liu, Qingxin [3 ]
Abualigah, Laith [4 ,5 ]
机构
[1] Sanming Univ, Sch Informat Engn, Sanming 365004, Peoples R China
[2] Sanming Univ, Sch Educ & Mus, Sanming 365004, Peoples R China
[3] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Hainan, Peoples R China
[4] Al Ahliyya Amman Univ, Hourani Ctr Appl Sci Res, Amman 19328, Jordan
[5] Middle East Univ, Fac Informat Technol, Amman 11831, Jordan
关键词
group teaching optimization algorithm; learning motivation strategy; random opposition-based learning; restart strategy; engineering problems; PARTICLE SWARM OPTIMIZATION; DIFFERENTIAL EVOLUTION; HEURISTIC OPTIMIZATION; GLOBAL OPTIMIZATION; SEARCH; SELECTION; VARIANTS; HYBRIDS;
D O I
10.3390/math10203765
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The group teaching optimization algorithm (GTOA) is a meta heuristic optimization algorithm simulating the group teaching mechanism. The inspiration of GTOA comes from the group teaching mechanism. Each student will learn the knowledge obtained in the teacher phase, but each student's autonomy is weak. This paper considers that each student has different learning motivations. Elite students have strong self-learning ability, while ordinary students have general self-learning motivation. To solve this problem, this paper proposes a learning motivation strategy and adds random opposition-based learning and restart strategy to enhance the global performance of the optimization algorithm (MGTOA). In order to verify the optimization effect of MGTOA, 23 standard benchmark functions and 30 test functions of IEEE Evolutionary Computation 2014 (CEC2014) are adopted to verify the performance of the proposed MGTOA. In addition, MGTOA is also applied to six engineering problems for practical testing and achieved good results.
引用
收藏
页数:36
相关论文
共 50 条
  • [11] An Adaptive Membrane Evolutionary Algorithm for Solving Constrained Engineering Optimization Problems
    Xiao, Jianhua
    Liu, Ying
    Zhang, Shuai
    Chen, Ping
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2017, 23 (07) : 652 - 672
  • [12] A novel differential evolution algorithm for solving constrained engineering optimization problems
    Mohamed, Ali Wagdy
    JOURNAL OF INTELLIGENT MANUFACTURING, 2018, 29 (03) : 659 - 692
  • [13] Meerkat optimization algorithm: A new meta-heuristic optimization algorithm for solving constrained engineering problems
    Xian, Sidong
    Feng, Xu
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 231
  • [14] An ε improved moth-flame optimization algorithm for solving constrained optimization problems and engineering applications
    Ye W.-J.
    Cao C.-W.
    Gu X.-S.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (10): : 2841 - 2849
  • [15] Moth-Flame Optimization Algorithm for Solving Real Challenging Constrained Engineering Optimization Problems
    Jangir, Narottam
    Trivedi, Indrajit N.
    Pandya, Mahesh H.
    Bhesdadiya, R. H.
    Jangir, Pradeep
    Kumar, Arvind
    2016 IEEE STUDENTS' CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER SCIENCE (SCEECS), 2016,
  • [16] Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems
    Eskandar, Hadi
    Sadollah, Ali
    Bahreininejad, Ardeshir
    Hamdi, Mohd
    COMPUTERS & STRUCTURES, 2012, 110 : 151 - 166
  • [17] Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems
    Zhang, Yiying
    Jin, Zhigang
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 148
  • [18] Improved Snake Optimization Algorithm for Solving Constrained Optimization Problems
    Liang, Ximing
    Shi, Lanyan
    Long, Wen
    Computer Engineering and Applications, 60 (10): : 76 - 87
  • [19] Improved Whale Optimization Algorithm for Solving Constrained Optimization Problems
    Ning, Gui-Ying
    Cao, Dun-Qian
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [20] Modified crayfish optimization algorithm for solving multiple engineering application problems
    Jia, Heming
    Zhou, Xuelian
    Zhang, Jinrui
    Abualigah, Laith
    Yildiz, Ali Riza
    Hussien, Abdelazim G.
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (05)