Antibacterial activity of nanozeolite doped with silver and titanium nanoparticles

被引:5
|
作者
Oviedo, Leandro Rodrigues [1 ]
Ladwig Muraro, Pamela Cristine [1 ]
Chuy, Gabriela [1 ]
Vizzotto, Bruno Stefanello [1 ]
Pavoski, Giovani [2 ]
Romano Espinosa, Denise Crocce [2 ]
Bohn Rhoden, Cristiano Rodrigo [1 ]
da Silva, William Leonardo [1 ]
机构
[1] Univ Franciscana, Nanosci Grad Program, Santa Maria, RS, Brazil
[2] Univ Sao Paulo, Polytech Sch Chem Engn, Rua Lago 250, BR-05508080 Sao Paulo, Brazil
关键词
K; pneumonia; S; aureus; P; aeruginosa; E; coli; Nanocomposites; Nanozeolites; AG NANOPARTICLES; VISIBLE-LIGHT; THIN-FILM; E.-COLI; TIO2; NANOCOMPOSITES; SURFACES;
D O I
10.1007/s10971-021-05698-5
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nowadays, microorganisms have been developing multidrug resistance, imposing a threat to the treatment of infections and increasing costs associated with health care systems. Moreover, these bacteria are responsible for several deaths worldwide. Nanocomposite consisting of metallic nanoparticles supported onto nanozeolites have been promising in the stabilization of nanoparticles and enhancement of the application of the antibacterial agent, resulting in a lesser extent of nanoparticle agglomeration and surface energy reduction. In this context, the present work aims to synthesize and characterize nanocomposites doping with silver (AgNPs @NZ-180) and titanium (TiNPs @NZ-180) nanoparticles. The samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), and zeta potential (ZP), respectively. Antibacterial activity of the nanocomposites was verified by minimum inhibitory concentration (MIC) determination against four bacterial strains. Results suggest that nanocomposites showed the regular shape and mesoporous structure, high purity, physio-chemical stability, and good dispersion of AgNPs and TiNPs on the support. FT-IR spectra showed some specific stretching such as was identified, such as Al-O, Si-O, TiO-O, Ag-O, Ti-O, and AgO-O stretching, confirming the successful incorporation of AgNPs and TiNPs. XRD diffractograms showed characteristic peaks of analcime structure, a type of nanozeolite with silver (2 circle minus = 33.26 degrees and 47.88 degrees) and titanium nanoparticles peaks (2 circle minus = 24.17 degrees, 25.86, 47.59 degrees and 52.28 degrees). Moreover, all samples represented negative charge surface ranged between -29.69 +/- 1.27 mV until -14.65 +/- 6.14 mV. Moreover, AgNPs @NZ-180 showed antibacterial activity against all bacteria tested (K pneumoniae, E. coli, S. aureus, and P. aeruginosa) at 250 mu g mL(-1) by MIC method, while TiNPs @NZ-180 did not show antibacterial activity in all procedures performed (<500 mu g mL(-1)), indicating that AgNPs have relevance on the antibacterial activity for the nanocomposite. Therefore, nanocomposite with polymeric matrix of nanozeolite (NZ-180) incorporated with silver nanoparticles (AgNPs) have potential medical applicability as a promising antimicrobial agent, using a simple and low-cost method, correlating nanomedicine as nanostructured materials. [GRAPHICS] .
引用
收藏
页码:235 / 243
页数:9
相关论文
共 50 条
  • [41] Enhancing the antibacterial activity of the biosynthesized silver nanoparticles by "puse"
    Ozgen, Arzu
    Aydin, Sinem Gurkan
    Bilgic, Erdi
    ISTANBUL JOURNAL OF PHARMACY, 2020, 50 (03): : 245 - 250
  • [42] Antibacterial activity of silver nanoparticles synthesized from serine
    Jayaprakash, N.
    Vijaya, J. Judith
    Kennedy, L. John
    Priadharsini, K.
    Palani, P.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 49 : 316 - 322
  • [43] Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli
    Li, Wen-Ru
    Xie, Xiao-Bao
    Shi, Qing-Shan
    Zeng, Hai-Yan
    Ou-Yang, You-Sheng
    Chen, Yi-Ben
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (04) : 1115 - 1122
  • [44] The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles
    Parastoo Pourali
    Majid Baserisalehi
    Sima Afsharnezhad
    Javad Behravan
    Rashin Ganjali
    Nima Bahador
    Sepideh Arabzadeh
    BioMetals, 2013, 26 : 189 - 196
  • [45] The Antibacterial Activity of Ceramsite Coated by Silver Nanoparticles in Micropore
    Qiu, Shan
    Huang, Xu
    Xu, Shanwen
    Ma, Fang
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 176 (01) : 267 - 276
  • [46] Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity
    Bhakya, S.
    Muthukrishnan, S.
    Sukumaran, M.
    Muthukumar, M.
    APPLIED NANOSCIENCE, 2016, 6 (05) : 755 - 766
  • [47] ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLES OBTAINED BY ELECTROCHEMICAL SYNTHESIS
    Pricop, Daniela
    Stefan, M.
    Mihasan, M.
    Hritcu, L.
    Olariu, R.
    Melnig, V.
    16TH INTERNATIONAL CONFERENCE THE KNOWLEDGE-BASED ORGANIZATION: APPLIED TECHNICAL SCIENCES AND ADVANCED MILITARY TECHNOLOGIES, CONFERENCE PROCEEDINGS 3, 2010, : 309 - 314
  • [48] Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity
    S. Bhakya
    S. Muthukrishnan
    M. Sukumaran
    M. Muthukumar
    Applied Nanoscience, 2016, 6 : 755 - 766
  • [49] Silver colloid nanoparticles:: Synthesis, characterization, and their antibacterial activity
    Panacek, Ales
    Kvitek, Libor
    Prucek, Robert
    Kolar, Milan
    Vecerova, Renata
    Pizurova, Nadezda
    Sharma, Virender K.
    Nevecna, Tat'jana
    Zboril, Radek
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (33): : 16248 - 16253
  • [50] The Antibacterial Activity of Ceramsite Coated by Silver Nanoparticles in Micropore
    Shan Qiu
    Xu Huang
    Shanwen Xu
    Fang Ma
    Applied Biochemistry and Biotechnology, 2015, 176 : 267 - 276