STABILIZATION OF PORT-HAMILTONIAN SYSTEMS WITH DISCONTINUOUS ENERGY DENSITIES

被引:1
|
作者
Schmid, Jochen [1 ]
机构
[1] Fraunhofer Inst Ind Math ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
关键词
Stabilization of port-Hamiltonian systems; exponential stability; en-ergy densities of bounded variation; static linear boundary control; STABILITY;
D O I
10.3934/eect.2021063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an exponential stabilization result for linear port Hamiltonian systems of first order with quite general, not necessarily continuous, energy densities. In fact, we have only to require the energy density of the system to be of bounded variation. In particular, and in contrast to the previously known stabilization results, our result applies to vibrating strings or beams with jumps in their mass density and their modulus of elasticity.
引用
收藏
页码:1775 / 1795
页数:21
相关论文
共 50 条
  • [41] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [42] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [43] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [44] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445
  • [45] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [46] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [47] Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control
    Ramirez, Hector
    Zwart, Hans
    Le Gorrec, Yann
    AUTOMATICA, 2017, 85 : 61 - 69
  • [48] Simultaneous stabilization of Port-Hamiltonian systems subject to actuation saturation and input delay
    Liang-Cheng Cai
    International Journal of Automation and Computing, 2021, 18 : 849 - 854
  • [49] Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity
    Fang, Zhou
    Gao, Chuanhou
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 4159 - 4166
  • [50] Structure preserving discontinuous Galerkin approximation of one-dimensional port-Hamiltonian systems
    Thoma, Tobias
    Kotyczka, Paul
    IFAC PAPERSONLINE, 2023, 56 (02): : 6783 - 6788