Maximal commutative subalgebras of matrix algebras

被引:3
|
作者
Song, YK [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Global Anal Res Ctr, Seoul 151742, South Korea
关键词
D O I
10.1080/00927879908826519
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Maximal commutative subalgebras of the algebra of n by n matrices over a field k very rarely have dimension smaller than n. There is a (B, N)-construction which yields subalgebras of this kind. The Courter's algebra that is of this kind was shown a (B, N)-construction where B is the Schur algebra of size 4 and N = k(4). That is, the Courter's algebra is isomorphic to B x (k(4))(2), the idealization of (k(4))(2). It was questioned how many isomorphism classes can be produced by varying the finitely generated faithful B-module N. In this paper, we will show that the set of all algebras B x N-2 fall into a single isomorphism class, where B is the Schur algebra of size 4 and N a finitely generated faithful B-module.
引用
收藏
页码:1649 / 1663
页数:15
相关论文
共 50 条
  • [41] Subalgebras of rational matrix algebras
    U. Albrecht
    H. P. Goeters
    T. Faticoni
    W. Wickless
    Acta Mathematica Hungarica, 1997, 74 : 1 - 6
  • [42] Subalgebras of rational matrix algebras
    Albrecht, U
    Goeters, HP
    Faticoni, T
    Wickless, W
    ACTA MATHEMATICA HUNGARICA, 1997, 74 (1-2) : 1 - 6
  • [43] Lengths of cyclic algebras and commutative subalgebras of quaternion matrices
    Miguel, C.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 628 : 130 - 139
  • [45] THIN SUBALGEBRAS OF LIE ALGEBRAS OF MAXIMAL CLASS
    Avitabile, M.
    Caranti, A.
    Gavioli, N.
    Monti, V
    Newman, M. F.
    O'Brien, E. A.
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 253 (01) : 101 - 112
  • [46] Leibniz algebras with absolute maximal Lie subalgebras
    Biyogmam, G. R.
    Tcheka, C.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01): : 52 - 65
  • [47] Maximal subalgebras and chief factors of Lie algebras
    Towers, David A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (01) : 482 - 493
  • [48] CONSTRUCTION FOR ALGEBRAS SATISFYING MAXIMAL CONDITION FOR SUBALGEBRAS
    AMAYO, RK
    COMPOSITIO MATHEMATICA, 1975, 31 (01) : 31 - 46
  • [49] Maximal subalgebras of finite-dimensional algebras
    Iovanov, Miodrag Cristian
    Sistko, Alexander Harris
    FORUM MATHEMATICUM, 2019, 31 (05) : 1283 - 1304
  • [50] Thin subalgebras of Lie algebras of maximal class
    M. Avitabile
    A. Caranti
    N. Gavioli
    V. Monti
    M. F. Newman
    E. A. O’Brien
    Israel Journal of Mathematics, 2023, 253 : 101 - 112