Tissue-specific gene targeting using CRISPR/Cas9

被引:14
|
作者
Ablain, J. [1 ,2 ]
Zon, L. I. [1 ,2 ]
机构
[1] Howard Hughes Med Inst, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
来源
ZEBRAFISH: GENETICS, GENOMICS, AND TRANSCRIPTOMICS, 4TH EDITION | 2016年 / 135卷
关键词
HUMAN-CELLS; KNOCK-IN; ZEBRAFISH; CRISPR-CAS9; ENDONUCLEASE; MUTAGENESIS; DISRUPTION; SYSTEM; IDENTIFICATION; EXPRESSION;
D O I
10.1016/bs.mcb.2016.03.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The zebrafish has been a powerful model in forward genetic screens to identify genes essential for organogenesis and embryonic development. Conversely, using reverse genetics to investigate specific gene function requires phenotypic analysis of complete gene inactivation. Despite the availability and efficacy of morpholinos, the lack of tractable and efficient knockout technologies has impeded reverse genetic studies in the zebrafish, particularly in adult animals. The recent development of genome-editing technologies such as CRISPR/Cas9 greatly widened the scope of loss-of-function studies in the zebrafish, allowing for the rapid phenotypic assessment of gene silencing in embryos, the generation of knockout lines, and large-scale reverse genetic screens. Tissue-specific gene inactivation would be ideal for these studies given the caveats of whole-embryo gene silencing, yet spatial control of gene targeting remains a challenge. In this chapter, we focus on tissue-specific gene inactivation using the CRISPR/Cas9 technology. We first explain the rationale for this technique, including some of its potential applications to tackle important biological issues and the inability of current technologies to address these issues. We then present a method to target genes in a tissue-specific manner in the zebrafish. Finally, we discuss technical difficulties and limitations of this method as well as possible future developments.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 50 条
  • [21] Tissue-Specific CRISPR/Cas9 System of Cotton Pollen withGhPLIMP2bandGhMYB24Promoters
    Lei, Jianfeng
    Dai, Peihong
    Li, Jiyang
    Yang, Mi
    Li, Xiuqin
    Zhang, Wanqi
    Zhou, Guantong
    WangzhenGuo
    Liu, Xiaodong
    JOURNAL OF PLANT BIOLOGY, 2021, 64 (01) : 13 - 21
  • [22] Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing
    Qiang Cheng
    Tuo Wei
    Lukas Farbiak
    Lindsay T. Johnson
    Sean A. Dilliard
    Daniel J. Siegwart
    Nature Nanotechnology, 2020, 15 : 313 - 320
  • [23] Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system
    Dahan-Meir, Tal
    Filler-Hayut, Shdema
    Melamed-Bessudo, Cathy
    Bocobza, Samuel
    Czosnek, Henryk
    Aharoni, Asaph
    Levy, Avraham A.
    PLANT JOURNAL, 2018, 95 (01): : 5 - 16
  • [24] Evaluation of multiple gene targeting in porcine embryos by the CRISPR/Cas9 system using electroporation
    Hirata, Maki
    Wittayarat, Manita
    Namula, Zhao
    Quynh Anh Le
    Lin, Qingyi
    Nhien Thi Nguyen
    Takebayashi, Koki
    Sato, Yoko
    Tanihara, Fuminori
    Otoi, Takeshige
    MOLECULAR BIOLOGY REPORTS, 2020, 47 (07) : 5073 - 5079
  • [25] Evaluation of multiple gene targeting in porcine embryos by the CRISPR/Cas9 system using electroporation
    Maki Hirata
    Manita Wittayarat
    Zhao Namula
    Quynh Anh Le
    Qingyi Lin
    Nhien Thi Nguyen
    Koki Takebayashi
    Yoko Sato
    Fuminori Tanihara
    Takeshige Otoi
    Molecular Biology Reports, 2020, 47 : 5073 - 5079
  • [26] Guidelines for optimized gene knockout using CRISPR/Cas9
    Van Campenhout, Claude
    Cabochette, Pauline
    Veillard, Anne-Clemence
    Laczik, Miklos
    Zelisko-Schmidt, Agnieszka
    Sabatel, Celine
    Dhainaut, Maxime
    Vanhollebeke, Benoit
    Gueydan, Cyril
    Kruys, Veronique
    BIOTECHNIQUES, 2019, 66 (06) : 295 - 302
  • [27] The enhancement of CRISPR/Cas9 gene editing using metformin
    Rollins, Jaedyn L.
    Hall, Raquel M.
    Lemus, Clara J.
    Leisten, Lauren A.
    Johnston, Jennifer M.
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2023, 35
  • [28] Gene editing using CRISPR/Cas9 in neuromuscular disorders
    Gonorazky, H.
    Maani, N.
    Khattak, S.
    Ivakine, Z.
    Cohn, R.
    Dowling, J.
    NEUROMUSCULAR DISORDERS, 2016, 26 : S127 - S127
  • [29] Targeting hepatitis B virus cccDNA using CRISPR/Cas9
    Kennedy, Edward M.
    Kornepati, Anand V. R.
    Cullen, Bryan R.
    ANTIVIRAL RESEARCH, 2015, 123 : 188 - 192
  • [30] How specific is CRISPR/Cas9 really?
    O'Geen, Henriette
    Yu, Abigail S.
    Segal, David J.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2015, 29 : 72 - 78