Cholinergic modulation of excitatory synaptic transmission in the CA3 area of the hippocampus

被引:118
|
作者
Vogt, KE [1 ]
Regehr, WG [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA
来源
JOURNAL OF NEUROSCIENCE | 2001年 / 21卷 / 01期
关键词
acetylcholine; hippocampus; associational-commissural; mossy fiber; muscarine; nicotine; presynaptic; calcium; fura-2; magnesium green;
D O I
10.1523/JNEUROSCI.21-01-00075.2001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cholinergic innervation of the hippocampus has been implicated in memory formation and retrieval. Here we study cholinergic modulation of excitatory transmission in the CA3 area of the rat hippocampus. We used a combination of optical measurements of presynaptic calcium and electrophysiological measurements of synaptic currents to study associational-commissural (A/C) and mossy fiber (MF) synapses in brain slices. Direct synaptic modulation mediated by ACh receptors is only evident at the A/C synapse, where synaptic inhibition primarily reflects presynaptic calcium channel inhibition mediated by muscarinic receptors. MF synapses can, however, be indirectly modulated by muscarinic receptor activation. Muscarine elevates the firing rate of inhibitory cells, which increases GABA release and inhibits MF synapses by activating presynaptic GABAB receptors. Muscarine also depolarizes dentate granule cells and elevates their rate of firing. This leads to synaptic enhancement when combined with the use-dependent facilitation of MF synapses. In addition we were unable to evoke an increase in presynaptic calcium levels in MF boutons with local application of nicotinic receptor agonists. This finding does not support a leading hypothesis for MF modulation in which activation of presynaptic nicotinic receptors enhances transmission directly by elevating presynaptic calcium levels. However, indirect synaptic modulation could arise from nicotinic excitation of inhibitory neurons. Thus, to understand cholinergic modulation within the CA3 region, it is necessary to take into account secondary actions on synapses arising from other chemical messengers released by other cell types and to consider effects on firing patterns of presynaptic cells, which in turn influence release via use-dependent synaptic plasticity.
引用
收藏
页码:75 / 83
页数:9
相关论文
共 50 条
  • [31] ROLE OF THE ADENYLATE-CYCLASE SYSTEM IN CHOLINERGIC MODULATION OF SYNAPTIC TRANSMISSION IN THE HIPPOCAMPUS
    GODUKHIN, OV
    BUDANTSEV, AY
    SHCHIPAKINA, TG
    KONDRATEV, VE
    NEUROPHYSIOLOGY, 1989, 21 (04) : 303 - 309
  • [32] Septal modulation of excitatory transmission in hippocampus
    Colgin, LL
    Kramár, EA
    Gall, CM
    Lynch, G
    JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (04) : 2358 - 2366
  • [33] Cholinergic modulation of synaptic transmission and plasticity ln entorhinal cortex and hippocampus of the rat
    Yun, SH
    Cheong, MY
    Mook-Jung, I
    Huh, K
    Lee, CJ
    Jung, MW
    NEUROSCIENCE, 2000, 97 (04) : 671 - 676
  • [34] A comparison of the adenosine-mediated synaptic inhibition in the CA3 area of immature and adult rat hippocampus
    Descombes, S
    Avoli, M
    Psarropoulou, C
    DEVELOPMENTAL BRAIN RESEARCH, 1998, 110 (01): : 51 - 59
  • [35] The synaptic activation of the GluR5 subtype of kainate receptor in area CA3 of the rat hippocampus
    Vignes, M
    Bleakman, D
    Lodge, D
    Collingridge, GL
    NEUROPHARMACOLOGY, 1997, 36 (11-12) : 1477 - 1481
  • [36] MODULATION OF FAST EXCITATORY SYNAPTIC TRANSMISSION BY CYCLOTHIAZIDE AND GYKI-52466 IN THE RAT HIPPOCAMPUS
    RAMMES, G
    PARSONS, C
    MULLER, W
    SWANDULLA, D
    NEUROSCIENCE LETTERS, 1994, 175 (1-2) : 21 - 24
  • [37] PRESYNAPTIC INHIBITION OF EXCITATORY SYNAPTIC TRANSMISSION MEDIATED BY ALPHA-ADRENERGIC RECEPTORS IN AREA-CA3 OF THE RAT HIPPOCAMPUS IN-VITRO
    SCANZIANI, M
    GAHWILER, BH
    THOMPSON, SM
    JOURNAL OF NEUROSCIENCE, 1993, 13 (12): : 5393 - 5401
  • [38] STUDIES ON SYNAPTIC STRUCTURE OF REGIONS CA1 AND CA3 AND RABBIT HIPPOCAMPUS
    NITSCHHA.C
    BAK, IJ
    MIKROSKOPIE, 1973, 28 (11-1) : 362 - 363
  • [39] Locus coeruleus modulates hippocampal CA3 synaptic transmission
    Zhang, Ning
    Matsuki, Norio
    NEUROSCIENCE RESEARCH, 2007, 58 : S134 - S134
  • [40] Y5 receptors mediate neuropeptide Y actions at excitatory synapses in area CA3 of the mouse hippocampus
    Guo, H
    Castro, PA
    Palmiter, RD
    Baraban, SC
    JOURNAL OF NEUROPHYSIOLOGY, 2002, 87 (01) : 558 - 566