An instability result in the theory of suspension bridges

被引:6
|
作者
Marchionna, Clelia [1 ]
Panizzi, Stefano [2 ]
机构
[1] Dipartimento Matemat Politecn, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43125 Parma, Italy
关键词
Suspension bridges; Torsional instability; Poincare map; Hill equation; NONLINEAR OSCILLATIONS;
D O I
10.1016/j.na.2016.03.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a second order system of two ODEs which arises as a single mode Galerkin projection of the so-called fish-bone (Berchio and Gazzola, 2015) model of suspension bridges. The two unknowns represent flexural and torsional modes of vibration of the deck of the bridge. The elastic response of the cables is supposed to be asymptotically linear under traction, and asymptotically constant when compressed (a generalization of the slackening regime). We establish a condition depending on a set of 3 parameters under which the flexural motions are unstable provided the energy is sufficiently large. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 28
页数:17
相关论文
共 50 条
  • [31] Buffeting characteristics of suspension bridges
    Pourzeynali, S
    Datta, TK
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON ADVANCES IN WIND & STRUCTURES (AWAS'02), 2002, : 385 - 392
  • [32] HISTORY AND ESTHETICS IN SUSPENSION BRIDGES
    COHEN, E
    STAHL, FL
    JOURNAL OF THE STRUCTURAL DIVISION-ASCE, 1978, 104 (06): : 1027 - 1030
  • [33] Preliminary analysis of suspension bridges
    Wollmann, G.P.
    Journal of Bridge Engineering, 2001, 6 (04) : 227 - 232
  • [34] The design of small suspension bridges
    Low, A. McC.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-BRIDGE ENGINEERING, 2010, 163 (04) : 197 - 202
  • [35] On the Melan equation for suspension bridges
    Filippo Gazzola
    Mohamed Jleli
    Bessem Samet
    Journal of Fixed Point Theory and Applications, 2014, 16 : 159 - 188
  • [36] A mathematical model of suspension bridges
    Liţcanu G.
    Applications of Mathematics, 2004, 49 (01) : 39 - 55
  • [37] Damage detection of suspension bridges
    Qin, Quan
    Zhang, Weiguo
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 1998, 38 (12): : 44 - 47
  • [38] Eigenproperties of suspension bridges with damage
    Materazzi, Annibale Luigi
    Ubertini, Filippo
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (26) : 6420 - 6434
  • [39] Stay cables for suspension bridges
    Bansillon, Francois J.
    Construction Repair, 1996, 10 (04): : 2 - 3
  • [40] HISTORY AND ESTHETICS IN SUSPENSION BRIDGES
    ROTHMAN, H
    JOURNAL OF THE STRUCTURAL DIVISION-ASCE, 1978, 104 (01): : 246 - 249