Facile synthesis and catalytic performance of Co3O4 nanosheets in situ formed on reduced graphene oxide modified Ni foam

被引:16
|
作者
Song, Congying [1 ]
Yin, Xianzhi [1 ]
Li, Biaopeng [1 ]
Ye, Ke [1 ]
Zhu, Kai [1 ]
Cao, Dianxue [1 ]
Cheng, Kui [1 ]
Wang, Guiling [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
PEROXIDE FUEL-CELL; OXYGEN REDUCTION REACTION; HYDROGEN-PEROXIDE; H2O2; ELECTROREDUCTION; ELECTROCATALYTIC REDUCTION; CATHODE CATALYST; PD NANOPARTICLES; ALKALINE-MEDIUM; COBALT; ELECTRODE;
D O I
10.1039/c7dt03048g
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A three-dimensional (3D) catalyst electrode of Co3O4 nanosheets in situ formed on reduced graphene oxide modified Ni foam (Co3O4\/rGO@Ni foam) for H2O2 electroreduction is prepared by a two-step hydrothermal method. In the first step, graphene oxide sheets are reduced and formed on the skeleton of Ni foam and Co3O4 nanosheets are synthesized intermixed with the rGO sheets through the second step. The Co3O4 nanosheets are made up of plentiful nanoparticles and there are many nanoholes among these nanoparticles which are beneficial for the sufficient contact between H2O2 and the catalyst. The morphology and phase composition of the Co3O4/rGO@Ni foam electrode are studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrocatalytic activity of the as-prepared electrode is investigated by cyclic voltammetry (CV) and chronoamperometry (CA). From the results, it can be seen that in 2 mol L-1 NaOH and 0.5 mol L-1 H2O2, the reduction current density of H2O2 on the Co3O4/rGO@Ni foam electrode is 450 mA cm(-2) at -0.8 V which is much higher than that on Co3O4 directly supported on Ni foam. This obvious increase of the current density can be attributed to the increase of the surface area of the electrode after the addition of rGO. Also, the interpenetration of rGO and Co3O4 nanosheets improves the electron and ion transport ability of the electrode which leads to a good electrocatalytic activity and stability of the Co3O4/rGO@Ni foam electrode.
引用
收藏
页码:13845 / 13853
页数:9
相关论文
共 50 条
  • [21] Enhanced Supercapacitor Performance Using a Co3O4@Co3S4 Nanocomposite on Reduced Graphene Oxide/Ni Foam Electrodes
    Ansarinejad, Hanieh
    Shabani-Nooshabadi, Mehdi
    Ghoreishi, Sayed Mehdi
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (10) : 1258 - 1270
  • [22] Facile synthesis of nanowire and rectangular flakes of Co3O4 onto Ni foam for high-performance asymmetric supercapacitors
    Xin Wang
    Kun Song
    Rui Yang
    Jishen Li
    Xiaoyan Jing
    Jun Wang
    Ionics, 2019, 25 : 3875 - 3883
  • [23] A facile synthesis of Co3O4 nanoflakes: Magnetic and catalytic properties
    Zhang, DongEn
    Li, Feng
    Chen, AiMei
    Xie, Qing
    Wang, MingYan
    Zhang, XiaoBo
    Li, ShanZhong
    Gong, JunYan
    Han, GuiQuan
    Ying, AiLing
    Tong, ZhiWei
    SOLID STATE SCIENCES, 2011, 13 (06) : 1221 - 1225
  • [24] A reduced graphene oxide/Co3O4 composite for supercapacitor electrode
    Xiang, Chengcheng
    Li, Ming
    Zhi, Mingjia
    Manivannan, Ayyakkannu
    Wu, Nianqiang
    JOURNAL OF POWER SOURCES, 2013, 226 : 65 - 70
  • [25] Facile synthesis of Co3O4 mesoporous nanosheets and their lithium storage properties
    Fang, Fang
    Bai, Lu
    Liu, Yanguo
    Cheng, Shaobo
    Sun, Hongyu
    MATERIALS LETTERS, 2014, 125 : 103 - 106
  • [26] Synthesis of reduced graphene oxide/Co3O4 nanocomposite electrode material for sensor application
    G. Vinodhkumar
    R. Ramya
    I. Vetha Potheher
    M. Vimalan
    A. Cyrac Peter
    Research on Chemical Intermediates, 2019, 45 : 3033 - 3051
  • [27] Synthesis of reduced graphene oxide/Co3O4 nanocomposite electrode material for sensor application
    Vinodhkumar, G.
    Ramya, R.
    Potheher, I. Vetha
    Vimalan, M.
    Peter, A. Cyrac
    RESEARCH ON CHEMICAL INTERMEDIATES, 2019, 45 (05) : 3033 - 3051
  • [28] Co3O4 nanosheets: synthesis and catalytic application for CO oxidation at room temperature
    Lv YongGe
    Li Yong
    Ta Na
    Shen WenJie
    SCIENCE CHINA-CHEMISTRY, 2014, 57 (06) : 873 - 880
  • [29] Co3O4 nanosheets:synthesis and catalytic application for CO oxidation at room temperature
    LV YongGe
    LI Yong
    TA Na
    SHEN WenJie
    Science China(Chemistry), 2014, (06) : 873 - 880
  • [30] Co3O4 nanosheets: synthesis and catalytic application for CO oxidation at room temperature
    YongGe Lv
    Yong Li
    Na Ta
    WenJie Shen
    Science China Chemistry, 2014, 57 : 873 - 880