Biomarkers to Predict Antidepressant Response

被引:113
|
作者
Leuchter, Andrew F. [1 ,2 ]
Cook, Ian A. [1 ,2 ]
Hamilton, Steven P. [3 ,4 ]
Narr, Katherine L. [5 ]
Toga, Arthur [5 ]
Hunter, Aimee M. [1 ,2 ]
Faull, Kym [2 ,6 ]
Whitelegge, Julian [2 ,6 ]
Andrews, Anne M. [2 ]
Loo, Joseph
Way, Baldwin [7 ]
Nelson, Stanley F. [2 ,8 ]
Horvath, Steven [8 ,9 ]
Lebowitz, Barry D. [10 ]
机构
[1] Univ Calif Los Angeles, Semel Inst Neurosci & Human Behav, David Geffen Sch Med, Lab Brain Behav & Pharmacol, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Semel Inst Neurosci & Human Behav, David Geffen Sch Med, Dept Psychiat & Biobehav Sci, Los Angeles, CA 90024 USA
[3] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90024 USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Chem & Biochem, Pasarow Mass Spectrometry Lab, Los Angeles, CA 90024 USA
[7] Univ Calif Los Angeles, Dept Psychol, Social Cognit Neurosci Lab, Los Angeles, CA 90024 USA
[8] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90024 USA
[9] Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90024 USA
[10] UCSD Sch Med, Dept Psychiat, Sam & Rose Stein Inst Res Aging, San Diego, CA USA
基金
美国国家卫生研究院;
关键词
Biomarkers; Major depression; Predicting treatment response; Brain imaging; Magnetic resonance imaging (MRI); Quantitative electroencephalography (QEEG); Cordance; Antidepressant Treatment Response (ATR) Index; Positron emission tomography (PET); Pharmacogenomics; Proteomics; Metabolomics; STAR-ASTERISK-D; MOOD-REGULATING CIRCUIT; ANTERIOR CINGULATE CORTEX; UNIPOLAR MAJOR DEPRESSION; SEROTONIN TRANSPORTER; HIPPOCAMPAL VOLUME; FACIAL EXPRESSIONS; NEURAL RESPONSE; SAD FACES; CONNECTIVITY;
D O I
10.1007/s11920-010-0160-4
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
During the past several years, we have achieved a deeper understanding of the etiology/pathophysiology of major depressive disorder (MDD). However, this improved understanding has not translated to improved treatment outcome. Treatment often results in symptomatic improvement, but not full recovery. Clinical approaches are largely trial-and-error, and when the first treatment does not result in recovery for the patient, there is little proven scientific basis for choosing the next. One approach to enhancing treatment outcomes in MDD has been the use of standardized sequential treatment algorithms and measurement-based care. Such treatment algorithms stand in contrast to the personalized medicine approach, in which biomarkers would guide decision making. Incorporation of biomarker measurements into treatment algorithms could speed recovery from MDD by shortening or eliminating lengthy and ineffective trials. Recent research results suggest several classes of physiologic biomarkers may be useful for predicting response. These include brain structural or functional findings, as well as genomic, proteomic, and metabolomic measures. Recent data indicate that such measures, at baseline or early in the course of treatment, may constitute useful predictors of treatment outcome. Once such biomarkers are validated, they could form the basis of new paradigms for antidepressant treatment selection.
引用
收藏
页码:553 / 562
页数:10
相关论文
共 50 条
  • [31] Dynamic Resting-State Network Biomarkers of Antidepressant Treatment Response
    Kaiser, Roselinde H.
    Chase, Henry W.
    Phillips, Mary L.
    Deckersbach, Thilo
    Parsey, Ramin V.
    Fava, Maurizio
    McGrath, Patrick J.
    Weissman, Myrna
    Oquendo, Maria A.
    McInnis, Melvin G.
    Carmody, Thomas
    Cooper, Crystal M.
    Trivedi, Madhukar H.
    Pizzagalli, Diego A.
    BIOLOGICAL PSYCHIATRY, 2022, 92 (07) : 533 - 542
  • [32] The Intracellular Localization of Serotonin Transporter as Candidate Biomarkers for the Prediction of Antidepressant Response
    Barakat, A.
    Scholl, C.
    Steffens, M.
    Stingl, J.
    PUBLIC HEALTH GENOMICS, 2016, 19 : 8 - 8
  • [33] Electroencephalographic Biomarkers for Predicting Antidepressant Response New Methods, Old Questions
    Grzenda, Adrienne
    Widge, Alik S.
    JAMA PSYCHIATRY, 2020, 77 (04) : 347 - 348
  • [34] DNA methylation of serotonin genes as predictive biomarkers of antidepressant treatment response
    Bruzzone, Silvia Elisabetta Portis
    Ozenne, Brice
    Fisher, Patrick MacDonald
    Ortega, Gabriela
    Jorgensen, Martin Balslev
    Knudsen, Gitte Moos
    Lesch, Klaus-Peter
    Frokjaer, Vibe Gedsoe
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2025, 136
  • [35] Biomarkers needed to predict progestin response in endometrial cancer
    Derbyshire, A. E.
    Ryan, N. A. J.
    Crosbie, E. J.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2017, 124 (10) : 1584 - 1584
  • [36] FISH then grill? Using biomarkers to predict response to ablation
    Blum, Andrew
    Chak, Amitabh
    GASTROINTESTINAL ENDOSCOPY, 2014, 80 (06) : 992 - 994
  • [37] Biomarkers predict clinical response to HDMSCIT in allergic asthmatics
    Yan, Huacheng
    Tang, Wei
    Sun, Lin
    Peng, Bo
    Du, Wei
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2025, 155 (02) : AB454 - AB454
  • [38] Identification of biomarkers to predict therapeutic response to biologicals in psoriasis
    Grine, L.
    de Medeiros, A. K.
    Van Gele, M.
    Spuls, P.
    Speeckaert, R.
    Lambert, J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2017, 137 (10) : S267 - S267
  • [39] Urine Biomarkers Predict Treatment Response in the MENTOR Study
    Pattrapornpisut, Prapa
    Moran, Sarah M.
    Bader, Gary
    Xu, Changjiang
    Boutros, Paul C.
    Fervenza, Fernando C.
    Barbour, Sean
    Cattran, Daniel C.
    Reich, Heather N.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 484 - 484
  • [40] Biomarkers that may predict response to immunotherapy in ovarian malignancies
    Chin, Curtis D.
    Fares, Charlene M.
    Konecny, Gottfried E.
    Rao, Jianyu
    CURRENT OPINION IN OBSTETRICS & GYNECOLOGY, 2020, 32 (01) : 84 - 90