Anyon Condensation and Continuous Topological Phase Transitions in Non-Abelian Fractional Quantum Hall States

被引:58
|
作者
Barkeshli, Maissam [1 ]
Wen, Xiao-Gang [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
FIELD-THEORIES;
D O I
10.1103/PhysRevLett.105.216804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a series of possible continuous quantum phase transitions between fractional quantum Hall states at the same filling fraction in two-component quantum Hall systems. These can be driven by tuning the interlayer tunneling and/or interlayer repulsion. One side of the transition is the Halperin (p, p, p - 3) Abelian two-component state, while the other side is the non-Abelian Z(4) parafermion (Read-Rezayi) state. We predict that the transition is a continuous transition in the 3D Ising class. The critical point is described by a Z(2) gauged Ginzburg-Landau theory. These results have implications for experiments on two-component systems at nu = 2/3 and single-component systems at nu = 8/3.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Non-Abelian fractional quantum Hall states and chiral coset conformal field theories
    Cabra, DC
    Fradkin, E
    Rossini, GL
    Schaposnik, FA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30): : 4857 - 4870
  • [32] Fractional Quantum Hall States at ν=13/5 and 12/5 and Their Non-Abelian Nature
    Zhu, W.
    Gong, S. S.
    Haldane, F. D. M.
    Sheng, D. N.
    PHYSICAL REVIEW LETTERS, 2015, 115 (12)
  • [33] Skein theory and topological quantum registers: Braiding matrices and topological entanglement entropy of non-Abelian quantum Hall states
    Hikami, Kazuhiro
    ANNALS OF PHYSICS, 2008, 323 (07) : 1729 - 1769
  • [34] Tensor Network Approach to Phase Transitions of a Non-Abelian Topological Phase
    Xu, Wen-Tao
    Zhang, Qi
    Zhang, Guang-Ming
    PHYSICAL REVIEW LETTERS, 2020, 124 (13)
  • [35] From fractional Chern insulators to Abelian and non-Abelian fractional quantum Hall states: Adiabatic continuity and orbital entanglement spectrum
    Liu, Zhao
    Bergholtz, Emil J.
    PHYSICAL REVIEW B, 2013, 87 (03)
  • [36] Distinguishing between non-abelian topological orders in a quantum Hall system
    Dutta, Bivas
    Yang, Wenmin
    Melcer, Ron
    Kundu, Hemanta Kumar
    Heiblum, Moty
    Umansky, Vladimir
    Oreg, Yuval
    Stern, Ady
    Mross, David
    SCIENCE, 2022, 375 (6577) : 193 - +
  • [37] Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension
    Paredes, Belen
    PHYSICAL REVIEW B, 2012, 85 (19):
  • [38] From Luttinger liquid to non-Abelian quantum Hall states
    Teo, Jeffrey C. Y.
    Kane, C. L.
    PHYSICAL REVIEW B, 2014, 89 (08)
  • [39] Parafermion statistics and application to non-Abelian quantum Hall states
    Ardonne, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (03): : 447 - 462
  • [40] Magnetization and Spin Excitations of Non-Abelian Quantum Hall States
    Kun Yang
    Rezayi, E. H.
    PHYSICAL REVIEW LETTERS, 2008, 101 (21)